6p8z

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:59, 6 November 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='6p8z' size='340' side='right'caption='[[6p8z]], [[Resolution|resolution]] 1.65&Aring;' scene=''>
<StructureSection load='6p8z' size='340' side='right'caption='[[6p8z]], [[Resolution|resolution]] 1.65&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6p8z]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P8Z OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6P8Z FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6p8z]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P8Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6P8Z FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=O5S:2-[5-chloro-2-cyclopropyl-3-(5-methoxy-3,4-dihydroisoquinoline-2(1H)-carbonyl)-7-methyl-1H-indol-1-yl]-N-(1-propanoylazetidin-3-yl)acetamide'>O5S</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.65&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6p8w|6p8w]], [[6p8x|6p8x]], [[6p8y|6p8y]]</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=O5S:2-[5-chloranyl-2-cyclopropyl-3-[(5-methoxy-3,4-dihydro-1~{H}-isoquinolin-2-yl)carbonyl]-7-methyl-indol-1-yl]-~{N}-(1-propanoylazetidin-3-yl)ethanamide'>O5S</scene></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6p8z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p8z OCA], [http://pdbe.org/6p8z PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6p8z RCSB], [http://www.ebi.ac.uk/pdbsum/6p8z PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6p8z ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6p8z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p8z OCA], [https://pdbe.org/6p8z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6p8z RCSB], [https://www.ebi.ac.uk/pdbsum/6p8z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6p8z ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:[http://omim.org/entry/601626 601626]]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:8955068</ref> Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[http://omim.org/entry/607785 607785]]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor. Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:[http://omim.org/entry/609942 609942]]. Noonan syndrome (NS) [MIM:[http://omim.org/entry/163950 163950]] is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.<ref>PMID:16773572</ref> <ref>PMID:16474405</ref> <ref>PMID:17468812</ref> <ref>PMID:17056636</ref> <ref>PMID:19396835</ref> <ref>PMID:20949621</ref> Defects in KRAS are a cause of gastric cancer (GASC) [MIM:[http://omim.org/entry/613659 613659]]; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.<ref>PMID:3034404</ref> <ref>PMID:7773929</ref> <ref>PMID:14534542</ref> Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.<ref>PMID:8439212</ref> Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:[http://omim.org/entry/115150 115150]]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant. Note=KRAS mutations are involved in cancer development.
+
[https://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN] Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:[https://omim.org/entry/601626 601626]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:8955068</ref> Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[https://omim.org/entry/607785 607785]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor. Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:[https://omim.org/entry/609942 609942]. Noonan syndrome (NS) [MIM:[https://omim.org/entry/163950 163950] is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.<ref>PMID:16773572</ref> <ref>PMID:16474405</ref> <ref>PMID:17468812</ref> <ref>PMID:17056636</ref> <ref>PMID:19396835</ref> <ref>PMID:20949621</ref> Defects in KRAS are a cause of gastric cancer (GASC) [MIM:[https://omim.org/entry/613659 613659]; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.<ref>PMID:3034404</ref> <ref>PMID:7773929</ref> <ref>PMID:14534542</ref> Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.<ref>PMID:8439212</ref> Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:[https://omim.org/entry/115150 115150]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant. Note=KRAS mutations are involved in cancer development.
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.
+
[https://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
KRAS regulates many cellular processes including proliferation, survival, and differentiation. Point mutants of KRAS have long been known to be molecular drivers of cancer. KRAS p.G12C, which occurs in approximately 14% of lung adenocarcinomas, 3-5% of colorectal cancers, and low levels in other solid tumors, represents an attractive therapeutic target for covalent inhibitors. Herein, we disclose the discovery of a class of novel, potent, and selective covalent inhibitors of KRAS(G12C) identified through a custom library synthesis and screening platform called Chemotype Evolution and structure-based design. Identification of a hidden surface groove bordered by H95/Y96/Q99 side chains was key to the optimization of this class of molecules. Best-in-series exemplars exhibit a rapid covalent reaction with cysteine 12 of GDP-KRAS(G12C) with submicromolar inhibition of downstream signaling in a KRAS(G12C)-specific manner.
 +
 
 +
Discovery of N-(1-Acryloylazetidin-3-yl)-2-(1H-indol-1-yl)acetamides as Covalent Inhibitors of KRAS(G12C).,Shin Y, Jeong JW, Wurz RP, Achanta P, Arvedson T, Bartberger MD, Campuzano IDG, Fucini R, Hansen SK, Ingersoll J, Iwig JS, Lipford JR, Ma V, Kopecky DJ, McCarter J, San Miguel T, Mohr C, Sabet S, Saiki AY, Sawayama A, Sethofer S, Tegley CM, Volak LP, Yang K, Lanman BA, Erlanson DA, Cee VJ ACS Med Chem Lett. 2019 Aug 20;10(9):1302-1308. doi: , 10.1021/acsmedchemlett.9b00258. eCollection 2019 Sep 12. PMID:31531201<ref>PMID:31531201</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6p8z" style="background-color:#fffaf0;"></div>
 +
 
 +
==See Also==
 +
*[[GTPase KRas 3D structures|GTPase KRas 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Mohr, C]]
+
[[Category: Mohr C]]
-
[[Category: Gtpase]]
+
-
[[Category: Inhibitor]]
+
-
[[Category: Signaling protein]]
+
-
[[Category: Signaling protein-inhibitor complex]]
+

Current revision

Crystal structure of human KRAS G12C covalently bound to an acryloylazetidine acetamide inhibitor

PDB ID 6p8z

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools