|
|
| Line 1: |
Line 1: |
| | | | |
| | ==Solution NMR ensemble for MlbQ at 298K compiled using the CoMAND method== | | ==Solution NMR ensemble for MlbQ at 298K compiled using the CoMAND method== |
| - | <StructureSection load='6qfp' size='340' side='right'caption='[[6qfp]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | + | <StructureSection load='6qfp' size='340' side='right'caption='[[6qfp]]' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6qfp]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Microbispora_sp._atcc_pta-5024 Microbispora sp. atcc pta-5024]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QFP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6QFP FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6qfp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Microbispora_sp._ATCC_PTA-5024 Microbispora sp. ATCC PTA-5024]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QFP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6QFP FirstGlance]. <br> |
| - | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2mvo|2mvo]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 10 models</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">mlbQ, MPTA5024_21425 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=316330 Microbispora sp. ATCC PTA-5024])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6qfp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qfp OCA], [https://pdbe.org/6qfp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6qfp RCSB], [https://www.ebi.ac.uk/pdbsum/6qfp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6qfp ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6qfp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qfp OCA], [http://pdbe.org/6qfp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6qfp RCSB], [http://www.ebi.ac.uk/pdbsum/6qfp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6qfp ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/W2EQT0_9ACTN W2EQT0_9ACTN] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 22: |
Line 23: |
| | </StructureSection> | | </StructureSection> |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Microbispora sp. atcc pta-5024]] | + | [[Category: Microbispora sp. ATCC PTA-5024]] |
| - | [[Category: Coles, M]] | + | [[Category: Coles M]] |
| - | [[Category: ElGamacy, M]] | + | [[Category: ElGamacy M]] |
| - | [[Category: Truffault, V]] | + | [[Category: Truffault V]] |
| - | [[Category: Zhu, H]] | + | [[Category: Zhu H]] |
| - | [[Category: Comand method]]
| + | |
| - | [[Category: R-factor refinement]]
| + | |
| - | [[Category: Signaling protein]]
| + | |
| Structural highlights
Function
W2EQT0_9ACTN
Publication Abstract from PubMed
The ability of proteins to adopt multiple conformational states is essential to their function, and elucidating the details of such diversity under physiological conditions has been a major challenge. Here we present a generalized method for mapping protein population landscapes by NMR spectroscopy. Experimental NOESY spectra are directly compared with a set of expectation spectra back-calculated across an arbitrary conformational space. Signal decomposition of the experimental spectrum then directly yields the relative populations of local conformational microstates. In this way, averaged descriptions of conformation can be eliminated. As the method quantitatively compares experimental and expectation spectra, it inherently delivers an R factor expressing how well structural models explain the input data. We demonstrate that our method extracts sufficient information from a single 3D NOESY experiment to perform initial model building, refinement, and validation, thus offering a complete de novo structure determination protocol.
Mapping Local Conformational Landscapes of Proteins in Solution.,ElGamacy M, Riss M, Zhu H, Truffault V, Coles M Structure. 2019 Mar 26. pii: S0969-2126(19)30083-8. doi:, 10.1016/j.str.2019.03.005. PMID:30930065[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ ElGamacy M, Riss M, Zhu H, Truffault V, Coles M. Mapping Local Conformational Landscapes of Proteins in Solution. Structure. 2019 Mar 26. pii: S0969-2126(19)30083-8. doi:, 10.1016/j.str.2019.03.005. PMID:30930065 doi:http://dx.doi.org/10.1016/j.str.2019.03.005
|