|
|
Line 3: |
Line 3: |
| <SX load='6qno' size='340' side='right' viewer='molstar' caption='[[6qno]], [[Resolution|resolution]] 4.38Å' scene=''> | | <SX load='6qno' size='340' side='right' viewer='molstar' caption='[[6qno]], [[Resolution|resolution]] 4.38Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6qno]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QNO OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6QNO FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6qno]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus], [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QNO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6QNO FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.38Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6qno FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qno OCA], [http://pdbe.org/6qno PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6qno RCSB], [http://www.ebi.ac.uk/pdbsum/6qno PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6qno ProSAT]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6qno FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qno OCA], [https://pdbe.org/6qno PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6qno RCSB], [https://www.ebi.ac.uk/pdbsum/6qno PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6qno ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/OPSD_BOVIN OPSD_BOVIN]] Photoreceptor required for image-forming vision at low light intensity. Required for photoreceptor cell viability after birth. Light-induced isomerization of 11-cis to all-trans retinal triggers a conformational change leading to G-protein activation and release of all-trans retinal (By similarity).<ref>PMID:16908857</ref> <ref>PMID:17060607</ref> [[http://www.uniprot.org/uniprot/GNAI1_HUMAN GNAI1_HUMAN]] Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.<ref>PMID:17635935</ref> <ref>PMID:17264214</ref> [[http://www.uniprot.org/uniprot/GBG1_BOVIN GBG1_BOVIN]] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. [[http://www.uniprot.org/uniprot/GBB1_BOVIN GBB1_BOVIN]] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. | + | [https://www.uniprot.org/uniprot/GNAI1_HUMAN GNAI1_HUMAN] Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.<ref>PMID:17635935</ref> <ref>PMID:17264214</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
| + | *[[Antibody 3D structures|Antibody 3D structures]] |
| + | *[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]] |
| *[[Rhodopsin 3D structures|Rhodopsin 3D structures]] | | *[[Rhodopsin 3D structures|Rhodopsin 3D structures]] |
| *[[Transducin 3D structures|Transducin 3D structures]] | | *[[Transducin 3D structures|Transducin 3D structures]] |
| + | *[[3D structures of non-human antibody|3D structures of non-human antibody]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 27: |
Line 31: |
| </SX> | | </SX> |
| [[Category: Bos taurus]] | | [[Category: Bos taurus]] |
| + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Adaixo, R J]] | + | [[Category: Mus musculus]] |
- | [[Category: Dawson, R J.P]] | + | [[Category: Adaixo RJ]] |
- | [[Category: Deupi, X]] | + | [[Category: Dawson RJP]] |
- | [[Category: Flock, T]] | + | [[Category: Deupi X]] |
- | [[Category: Maeda, S]] | + | [[Category: Flock T]] |
- | [[Category: Marino, J]] | + | [[Category: Maeda S]] |
- | [[Category: Matile, H]] | + | [[Category: Marino J]] |
- | [[Category: Mohammed, I]] | + | [[Category: Matile H]] |
- | [[Category: Muehle, J]] | + | [[Category: Mohammed I]] |
- | [[Category: Pamula, F]] | + | [[Category: Muehle J]] |
- | [[Category: Schertler, G F.X]] | + | [[Category: Pamula F]] |
- | [[Category: Stahlberg, H]] | + | [[Category: Schertler GFX]] |
- | [[Category: Taylor, N M.I]] | + | [[Category: Stahlberg H]] |
- | [[Category: Tsai, C J]] | + | [[Category: Taylor NMI]] |
- | [[Category: Gpcr and g protein complex]]
| + | [[Category: Tsai C-J]] |
- | [[Category: Signaling protein]]
| + | |
| Structural highlights
Function
GNAI1_HUMAN Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.[1] [2]
Publication Abstract from PubMed
One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gbeta subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gbeta as scaffold for recruiting Galpha subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.
Cryo-EM structure of the rhodopsin-Galphai-betagamma complex reveals binding of the rhodopsin C-terminal tail to the Gbeta subunit.,Tsai CJ, Marino J, Adaixo R, Pamula F, Muehle J, Maeda S, Flock T, Taylor NM, Mohammed I, Matile H, Dawson RJ, Deupi X, Stahlberg H, Schertler G Elife. 2019 Jun 28;8. pii: 46041. doi: 10.7554/eLife.46041. PMID:31251171[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Cho H, Kehrl JH. Localization of Gi alpha proteins in the centrosomes and at the midbody: implication for their role in cell division. J Cell Biol. 2007 Jul 16;178(2):245-55. PMID:17635935 doi:10.1083/jcb.200604114
- ↑ Johnston CA, Siderovski DP. Structural basis for nucleotide exchange on G alpha i subunits and receptor coupling specificity. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):2001-6. Epub 2007 Jan 30. PMID:17264214
- ↑ Tsai CJ, Marino J, Adaixo R, Pamula F, Muehle J, Maeda S, Flock T, Taylor NM, Mohammed I, Matile H, Dawson RJ, Deupi X, Stahlberg H, Schertler G. Cryo-EM structure of the rhodopsin-Galphai-betagamma complex reveals binding of the rhodopsin C-terminal tail to the Gbeta subunit. Elife. 2019 Jun 28;8. pii: 46041. doi: 10.7554/eLife.46041. PMID:31251171 doi:http://dx.doi.org/10.7554/eLife.46041
|