7jmr
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
==Crystal structure of the pea pathogenicity protein 2 from Madurella mycetomatis== | ==Crystal structure of the pea pathogenicity protein 2 from Madurella mycetomatis== | ||
| - | <StructureSection load='7jmr' size='340' side='right'caption='[[7jmr]]' scene=''> | + | <StructureSection load='7jmr' size='340' side='right'caption='[[7jmr]], [[Resolution|resolution]] 1.67Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7JMR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7JMR FirstGlance]. <br> | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7JMR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7JMR FirstGlance]. <br> | ||
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7jmr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7jmr OCA], [https://pdbe.org/7jmr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7jmr RCSB], [https://www.ebi.ac.uk/pdbsum/7jmr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7jmr ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.67Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7jmr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7jmr OCA], [https://pdbe.org/7jmr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7jmr RCSB], [https://www.ebi.ac.uk/pdbsum/7jmr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7jmr ProSAT]</span></td></tr> | ||
</table> | </table> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids' non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases. Here, we report the crystal structures (1.5-1.9 A) of two homologous fungal decarboxylases, AGDC1 from Arxula adenivorans, and PPP2 from Madurella mycetomatis. Remarkably, both decarboxylases are cofactor independent and are superior to prFMN-dependent decarboxylases when heterologously expressed in Saccharomyces cerevisiae. The organization of their active site, together with mutational studies, suggests a novel decarboxylation mechanism that combines acid-base catalysis and transition state stabilization. Both enzymes are trimers, with a central potassium binding site. In each monomer, potassium introduces a local twist in a beta-sheet close to the active site, which primes the critical H86-D40 dyad for catalysis. A conserved pair of tryptophans, W35 and W61, acts like a clamp that destabilizes the substrate by twisting its carboxyl group relative to the phenol moiety. These findings reveal AGDC1 and PPP2 as founding members of a so far overlooked group of cofactor independent decarboxylases and suggest strategies to engineer their unique chemistry for a wide variety of biotechnological applications. | ||
| + | |||
| + | Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists.,Zeug M, Markovic N, Iancu CV, Tripp J, Oreb M, Choe JY Sci Rep. 2021 Feb 4;11(1):3056. doi: 10.1038/s41598-021-82660-z. PMID:33542397<ref>PMID:33542397</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| + | <div class="pdbe-citations 7jmr" style="background-color:#fffaf0;"></div> | ||
| + | == References == | ||
| + | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
Current revision
Crystal structure of the pea pathogenicity protein 2 from Madurella mycetomatis
| |||||||||||
Categories: Large Structures | Choe J | Iancu CV | Markovic N | Oreb M | Tripp J | Zeug M
