8cwa
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8cwa]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8CWA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8CWA FirstGlance]. <br> | <table><tr><td colspan='2'>[[8cwa]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8CWA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8CWA FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DPR:D-PROLINE'>DPR</scene>, <scene name='pdbligand=DVA:D-VALINE'>DVA</scene>, <scene name='pdbligand=MLE:N-METHYLLEUCINE'>MLE</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 20 models</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DPR:D-PROLINE'>DPR</scene>, <scene name='pdbligand=DVA:D-VALINE'>DVA</scene>, <scene name='pdbligand=MLE:N-METHYLLEUCINE'>MLE</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8cwa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8cwa OCA], [https://pdbe.org/8cwa PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8cwa RCSB], [https://www.ebi.ac.uk/pdbsum/8cwa PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8cwa ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8cwa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8cwa OCA], [https://pdbe.org/8cwa PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8cwa RCSB], [https://www.ebi.ac.uk/pdbsum/8cwa PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8cwa ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 11: | Line 12: | ||
We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 x 10(-6) cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics. | We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 x 10(-6) cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics. | ||
- | Accurate de novo design of membrane-traversing macrocycles.,Bhardwaj G, O'Connor J, Rettie S, Huang YH, Ramelot TA, Mulligan VK, Alpkilic GG, Palmer J, Bera AK, Bick MJ, Di Piazza M, Li X, Hosseinzadeh P, Craven TW, Tejero R, Lauko A, Choi R, Glynn C, Dong L, Griffin R, van Voorhis WC, Rodriguez J, Stewart L, Montelione GT, Craik D, Baker D Cell. 2022 | + | Accurate de novo design of membrane-traversing macrocycles.,Bhardwaj G, O'Connor J, Rettie S, Huang YH, Ramelot TA, Mulligan VK, Alpkilic GG, Palmer J, Bera AK, Bick MJ, Di Piazza M, Li X, Hosseinzadeh P, Craven TW, Tejero R, Lauko A, Choi R, Glynn C, Dong L, Griffin R, van Voorhis WC, Rodriguez J, Stewart L, Montelione GT, Craik D, Baker D Cell. 2022 Sep 15;185(19):3520-3532.e26. doi: 10.1016/j.cell.2022.07.019. Epub , 2022 Aug 29. PMID:36041435<ref>PMID:36041435</ref> |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
Current revision
Solution NMR structure of 8-residue Rosetta-designed cyclic peptide D8.21 in CDCl3 with cis/trans switching (TC conformation, 53%)
|