1lhm

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (00:12, 21 November 2024) (edit) (undo)
 
Line 7: Line 7:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1lhm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1lhm OCA], [https://pdbe.org/1lhm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1lhm RCSB], [https://www.ebi.ac.uk/pdbsum/1lhm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1lhm ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1lhm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1lhm OCA], [https://pdbe.org/1lhm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1lhm RCSB], [https://www.ebi.ac.uk/pdbsum/1lhm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1lhm ProSAT]</span></td></tr>
</table>
</table>
-
== Disease ==
 
-
[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref>
 
-
== Function ==
 
-
[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.
 
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 16: Line 12:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/lh/1lhm_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/lh/1lhm_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1lhm ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1lhm ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The three-dimensional structure of a mutant human lysozyme, C77/95A, in which residues Cys77 and Cys95 were replaced by alanine, was determined at 1.8-A resolution by x-ray crystallography. The properties of this mutant protein have been well characterized with respect to its thermal stability and secretion efficiency in a yeast expression system. The overall three-dimensional structure of C77/95A was found to be essentially identical to that of the wild-type human lysozyme, although the coordinates were shifted by more than 0.5 A and the thermal factors of the main-chain atoms were increased in the vicinity of residue 77. The reduction in thermal stability of this mutant has been previously explained by an increase in entropy of the unfolded state. In addition, a packing defect (cavity) produced by the removal of the disulfide bond was detected in the three-dimensional structure of C77/95A. This cavity can also be a reason why the stability of the protein is reduced because the free energy of the folded state could be expected to increase. The increased secretion efficiency cannot be due mainly to the three-dimensional structure, but may possibly be related to some event in the pathway of protein secretion. One of the possibilities might involve molecular flexibilities in the secondary or tertiary structure for lack of one of the disulfide bonds.
 +
 +
The crystal structure of a mutant human lysozyme C77/95A with increased secretion efficiency in yeast.,Inaka K, Taniyama Y, Kikuchi M, Morikawa K, Matsushima M J Biol Chem. 1991 Jul 5;266(19):12599-603. PMID:2061330<ref>PMID:2061330</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1lhm" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==

Current revision

THE CRYSTAL STRUCTURE OF A MUTANT LYSOZYME C77(SLASH)95A WITH INCREASED SECRETION EFFICIENCY IN YEAST

PDB ID 1lhm

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools