1ucl

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
[[Image:1ucl.jpg|left|200px]]
[[Image:1ucl.jpg|left|200px]]
-
{{Structure
+
<!--
-
|PDB= 1ucl |SIZE=350|CAPTION= <scene name='initialview01'>1ucl</scene>, resolution 1.82&Aring;
+
The line below this paragraph, containing "STRUCTURE_1ucl", creates the "Structure Box" on the page.
-
|SITE=
+
You may change the PDB parameter (which sets the PDB file loaded into the applet)
-
|LIGAND= <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>
+
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
-
|ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Ribonuclease_T(1) Ribonuclease T(1)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.27.3 3.1.27.3] </span>
+
or leave the SCENE parameter empty for the default display.
-
|GENE=
+
-->
-
|DOMAIN=
+
{{STRUCTURE_1ucl| PDB=1ucl | SCENE= }}
-
|RELATEDENTRY=[[1rgg|1RGG]], [[1uci|1UCI]], [[1ucj|1UCJ]], [[1uck|1UCK]]
+
-
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ucl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ucl OCA], [http://www.ebi.ac.uk/pdbsum/1ucl PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1ucl RCSB]</span>
+
-
}}
+
'''Mutants of RNase Sa'''
'''Mutants of RNase Sa'''
Line 23: Line 20:
==Reference==
==Reference==
The contribution of polar group burial to protein stability is strongly context-dependent., Takano K, Scholtz JM, Sacchettini JC, Pace CN, J Biol Chem. 2003 Aug 22;278(34):31790-5. Epub 2003 Jun 10. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12799387 12799387]
The contribution of polar group burial to protein stability is strongly context-dependent., Takano K, Scholtz JM, Sacchettini JC, Pace CN, J Biol Chem. 2003 Aug 22;278(34):31790-5. Epub 2003 Jun 10. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12799387 12799387]
-
[[Category: Ribonuclease T(1)]]
 
[[Category: Single protein]]
[[Category: Single protein]]
[[Category: Streptomyces aureofaciens]]
[[Category: Streptomyces aureofaciens]]
Line 30: Line 26:
[[Category: Scholtz, J M.]]
[[Category: Scholtz, J M.]]
[[Category: Takano, K.]]
[[Category: Takano, K.]]
-
[[Category: burial polar]]
+
[[Category: Burial polar]]
-
[[Category: hydrogen bond]]
+
[[Category: Hydrogen bond]]
-
[[Category: protein stability]]
+
[[Category: Protein stability]]
-
 
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May 3 11:02:34 2008''
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 00:08:26 2008''
+

Revision as of 08:02, 3 May 2008

Template:STRUCTURE 1ucl

Mutants of RNase Sa


Overview

We previously suggested that proteins gain more stability from the burial and hydrogen bonding of polar groups than from the burial of nonpolar groups (Pace, C. N. (2001) Biochemistry 40, 310-313). To study this further, we prepared eight Thr-to-Val mutants of RNase Sa, four in which the Thr side chain is hydrogen-bonded and four in which it is not. We measured the stability of these mutants by analyzing their thermal denaturation curves. The four hydrogen-bonded Thr side chains contribute 1.3 +/- 0.9 kcal/mol to the stability; those that are not still contribute 0.4 +/- 0.9 kcal/mol to the stability. For 40 Thr-to-Val mutants of 11 proteins, the average decrease in stability is 1.0 +/- 1.0 kcal/mol when the Thr side chain is hydrogen-bonded and 0.0 +/- 0.5 kcal/mol when it is not. This is clear evidence that hydrogen bonds contribute favorably to protein stability. In addition, we prepared four Val-to-Thr mutants of RNase Sa, measured their stability, and determined their crystal structures. In all cases, the mutants are less stable than the wild-type protein, with the decreases in stability ranging from 0.5 to 4.4 kcal/mol. For 41 Val-to-Thr mutants of 11 proteins, the average decrease in stability is 1.8 +/- 1.3 kcal/mol and is unfavorable for 40 of 41 mutants. This shows that placing an [bond]OH group at a site designed for a [bond]CH3 group is very unfavorable. So, [bond]OH groups can contribute favorably to protein stability, even if they are not hydrogen-bonded, if the site was selected for an [bond]OH group, but they will make an unfavorable contribution to stability, even if they are hydrogen-bonded, when they are placed at a site selected for a [bond]CH3 group. The contribution that polar groups make to protein stability depends strongly on their environment.

About this Structure

1UCL is a Single protein structure of sequence from Streptomyces aureofaciens. Full crystallographic information is available from OCA.

Reference

The contribution of polar group burial to protein stability is strongly context-dependent., Takano K, Scholtz JM, Sacchettini JC, Pace CN, J Biol Chem. 2003 Aug 22;278(34):31790-5. Epub 2003 Jun 10. PMID:12799387 Page seeded by OCA on Sat May 3 11:02:34 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools