|
|
Line 3: |
Line 3: |
| <StructureSection load='2r91' size='340' side='right'caption='[[2r91]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='2r91' size='340' side='right'caption='[[2r91]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2r91]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_35583 Atcc 35583]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2R91 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2R91 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2r91]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermoproteus_tenax Thermoproteus tenax]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2R91 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2R91 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2r94|2r94]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">kdgA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=2271 ATCC 35583])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2r91 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2r91 OCA], [https://pdbe.org/2r91 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2r91 RCSB], [https://www.ebi.ac.uk/pdbsum/2r91 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2r91 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2r91 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2r91 OCA], [https://pdbe.org/2r91 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2r91 RCSB], [https://www.ebi.ac.uk/pdbsum/2r91 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2r91 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/KDGA_THETE KDGA_THETE]] Involved in the degradation of glucose via the Entner-Doudoroff pathway. Catalyzes the reversible cleavage of 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxygluconate (KDG) forming pyruvate and glyceraldehyde 3-phosphate or glyceraldehyde, respectively. It is not able to use 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) and 2-keto-3-deoxygalactonate (KDGal) as substrate.<ref>PMID:15028704</ref> <ref>PMID:15869466</ref> <ref>PMID:18186475</ref>
| + | [https://www.uniprot.org/uniprot/KDGA_THETE KDGA_THETE] Involved in the degradation of glucose via the Entner-Doudoroff pathway. Catalyzes the reversible cleavage of 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxygluconate (KDG) forming pyruvate and glyceraldehyde 3-phosphate or glyceraldehyde, respectively. It is not able to use 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) and 2-keto-3-deoxygalactonate (KDGal) as substrate.<ref>PMID:15028704</ref> <ref>PMID:15869466</ref> <ref>PMID:18186475</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 16: |
Line 15: |
| <jmolCheckbox> | | <jmolCheckbox> |
| <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/r9/2r91_consurf.spt"</scriptWhenChecked> | | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/r9/2r91_consurf.spt"</scriptWhenChecked> |
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
Line 37: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 35583]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Ahmed, H]] | + | [[Category: Thermoproteus tenax]] |
- | [[Category: Buchinger, S]] | + | [[Category: Ahmed H]] |
- | [[Category: Lorentzen, E]] | + | [[Category: Buchinger S]] |
- | [[Category: Pauluhn, A]] | + | [[Category: Lorentzen E]] |
- | [[Category: Pohl, E]] | + | [[Category: Pauluhn A]] |
- | [[Category: Schomburg, D]] | + | [[Category: Pohl E]] |
- | [[Category: Siebers, B]] | + | [[Category: Schomburg D]] |
- | [[Category: Aldolase]]
| + | [[Category: Siebers B]] |
- | [[Category: Lyase]]
| + | |
- | [[Category: Thermophilic]]
| + | |
- | [[Category: Tim barrel]]
| + | |
| Structural highlights
Function
KDGA_THETE Involved in the degradation of glucose via the Entner-Doudoroff pathway. Catalyzes the reversible cleavage of 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxygluconate (KDG) forming pyruvate and glyceraldehyde 3-phosphate or glyceraldehyde, respectively. It is not able to use 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) and 2-keto-3-deoxygalactonate (KDGal) as substrate.[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Carbon-carbon bond forming enzymes offer great potential for organic biosynthesis. Hence there is an ongoing effort to improve their biocatalytic properties, regarding availability, activity, stability, and substrate specificity and selectivity. Aldolases belong to the class of C-C bond forming enzymes and play important roles in numerous cellular processes. In several hyperthermophilic Archaea the 2-keto-3-deoxy-(6-phospho)-gluconate (KD(P)G) aldolase was identified as a key player in the metabolic pathway. The carbohydrate metabolism of the hyperthermophilic Crenarchaeote Thermoproteus tenax, for example, has been found to employ a combination of a variant of the Embden-Meyerhof-Parnas pathway and an unusual branched Entner-Doudoroff pathway that harbors a nonphosphorylative and a semiphosphorylative branch. The KD(P)G aldolase catalyzes the reversible cleavage of 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxygluconate (KDG) forming pyruvate and glyceraldehyde 3-phosphate or glyceraldehyde, respectively. In T. tenax initial studies revealed that the pathway is specific for glucose, whereas in the thermoacidophilic Crenarchaeote Sulfolobus solfataricus the pathway was shown to be promiscuous for glucose and galactose degradation. The KD(P)G aldolase of S. solfataricus lacks stereo control and displays additional activity with 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) and 2-keto-3-deoxygalactonate (KDGal), similar to the KD(P)G aldolase of Sulfolobus acidocaldarius. To address the stereo control of the T. tenax enzyme the formation of the two C4 epimers KDG and KDGal was analyzed via gas chromatography combined with mass spectroscopy. Furthermore, the crystal structure of the apoprotein was determined to a resolution of 2.0 A, and the crystal structure of the protein covalently linked to a pathway intermediate, namely pyruvate, was determined to 2.2 A. Interestingly, although the pathway seems to be specific for glucose in T. tenax the enzyme apparently also lacks stereo control, suggesting that the enzyme is a trade-off between required catabolic flexibility needed for the conversion of phosphorylated and nonphosphorylated substrates and required stereo control of cellular/physiological enzymatic reactions.
Crystal structure and stereochemical studies of KD(P)G aldolase from Thermoproteus tenax.,Pauluhn A, Ahmed H, Lorentzen E, Buchinger S, Schomburg D, Siebers B, Pohl E Proteins. 2008 Jul;72(1):35-43. PMID:18186475[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Siebers B, Tjaden B, Michalke K, Dorr C, Ahmed H, Zaparty M, Gordon P, Sensen CW, Zibat A, Klenk HP, Schuster SC, Hensel R. Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol. 2004 Apr;186(7):2179-94. PMID:15028704
- ↑ Ahmed H, Ettema TJ, Tjaden B, Geerling AC, van der Oost J, Siebers B. The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem J. 2005 Sep 1;390(Pt 2):529-40. PMID:15869466 doi:http://dx.doi.org/10.1042/BJ20041711
- ↑ Pauluhn A, Ahmed H, Lorentzen E, Buchinger S, Schomburg D, Siebers B, Pohl E. Crystal structure and stereochemical studies of KD(P)G aldolase from Thermoproteus tenax. Proteins. 2008 Jul;72(1):35-43. PMID:18186475 doi:10.1002/prot.21890
- ↑ Pauluhn A, Ahmed H, Lorentzen E, Buchinger S, Schomburg D, Siebers B, Pohl E. Crystal structure and stereochemical studies of KD(P)G aldolase from Thermoproteus tenax. Proteins. 2008 Jul;72(1):35-43. PMID:18186475 doi:10.1002/prot.21890
|