3r0l

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (02:20, 21 November 2024) (edit) (undo)
 
Line 9: Line 9:
</table>
</table>
== Function ==
== Function ==
-
[https://www.uniprot.org/uniprot/PA2H_CRODU PA2H_CRODU] CAalpha-CAbeta-CAgamma: The acidic subunit of crotoxin (CA) is a heterotrimer of three disulfide-linked chains generated by post-translational maturation of a PLA2-like precursor. CA has no PLA2 activity and is not neurotoxic by itself, but plays several important functions in the crotoxin complex by increasing the lethal potency of the uncomplexed CB subunit. It acts by physically occluding the hydrophobic interfacial binding surface (IBS) of CB (PubMed:21787789, PubMed:21787789). This effect decreases the adsorption of CB to phospholipid membranes, targeting the crotoxin complex to reach the specific presynaptic receptor (R48) at the neuromuscular junction. It also prevents the formation of the reactive CB dimer. Moreover, the CA subunit inhibits the catalytic activity by partially masking the catalytic site of CB (PubMed:21787789) and inhibits its anticoagulant activity.<ref>PMID:21787789</ref> Heterodimer CA-CB: Crotoxin is a potent presynaptic neurotoxin that possesses phospholipase A2 (PLA2) activity and exerts a lethal action by blocking neuromuscular transmission. It consists of a non-covalent association of a basic and weakly toxic PLA2 subunit (CBa2, CBb, CBc, or CBd), with a small acidic, non-enzymatic and non-toxic subunit (CA1, CA2, CA3 or CA4). The complex acts by binding to a specific 48-kDa protein (R48/CAPT) receptor located on presynaptic membranes, forming a transient ternary complex CA-CB-R48, followed by dissociation of the CA-CB complex and release of the CA subunit (PubMed:12657321). At equilibrium, only the CB subunits remain associated with the specific crotoxin receptor. In addition to neurotoxicity, crotoxin has been found to exert myotoxicity, nephrotoxicity, and cardiovascular toxicity (PubMed:20109480). Moreover, anti-inflammatory, immunomodulatory, anti-tumor and analgesic effects of crotoxin have also been reported (PubMed:20109480).<ref>PMID:12657321</ref> <ref>PMID:20109480</ref> Found in the venom as a monomer and stabilized by one disulfide bond (Cys-131 and Cys-138) (PubMed:18495297). This peptide induces potent antinociceptive effects in acute and chronic pain models (PubMed:18495297, PubMed:18703042). This effect is mediated by the release of peripheral dynorphin A, an endogenous agonist of kappa-opioid receptors, and this release is dependent on cannabinoid receptor CB2 activation (PubMed:24460677).<ref>PMID:18495297</ref> <ref>PMID:18703042</ref> <ref>PMID:24460677</ref>
+
[https://www.uniprot.org/uniprot/PA2H_CRODU PA2H_CRODU] CAalpha-CAbeta-CAgamma: The acidic subunit of crotoxin (CA) is a heterotrimer of three disulfide-linked chains generated by post-translational maturation of a PLA2-like precursor. CA has no PLA2 activity and is not neurotoxic by itself, but plays several important functions in the crotoxin complex by increasing the lethal potency of the uncomplexed CB subunit. It acts by physically occluding the hydrophobic interfacial binding surface (IBS) of CB (PubMed:21787789). This effect decreases the adsorption of CB to phospholipid membranes, targeting the crotoxin complex to reach the specific presynaptic receptor (R48) at the neuromuscular junction. It also prevents the formation of the reactive CB dimer. Moreover, the CA subunit inhibits the catalytic activity by partially masking the catalytic site of CB (PubMed:21787789) and inhibits its anticoagulant activity.<ref>PMID:21787789</ref> Heterodimer CA-CB: Crotoxin is a potent presynaptic neurotoxin that possesses phospholipase A2 (PLA2) activity and exerts a lethal action by blocking neuromuscular transmission. It consists of a non-covalent association of a basic and weakly toxic PLA2 subunit (CBa2, CBb, CBc, or CBd), with a small acidic, non-enzymatic and non-toxic subunit (CA1, CA2, CA3 or CA4). The complex acts by binding to a specific 48-kDa protein (R48/CAPT) receptor located on presynaptic membranes, forming a transient ternary complex CA-CB-R48, followed by dissociation of the CA-CB complex and release of the CA subunit (PubMed:12657321). At equilibrium, only the CB subunits remain associated with the specific crotoxin receptor. In addition to neurotoxicity, crotoxin has been found to exert myotoxicity, nephrotoxicity, and cardiovascular toxicity (PubMed:20109480). Moreover, anti-inflammatory, immunomodulatory, anti-tumor and analgesic effects of crotoxin have also been reported (PubMed:20109480).<ref>PMID:12657321</ref> <ref>PMID:20109480</ref> Found in the venom as a monomer and stabilized by one disulfide bond (Cys-131 and Cys-138) (PubMed:18495297). This peptide induces potent antinociceptive effects in acute and chronic pain models (PubMed:18495297, PubMed:18703042). This effect is mediated by the release of peripheral dynorphin A, an endogenous agonist of kappa-opioid receptors, and this release is dependent on cannabinoid receptor CB2 activation (PubMed:24460677).<ref>PMID:18495297</ref> <ref>PMID:18703042</ref> <ref>PMID:24460677</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The crystal structure of crotoxin, a potent presynaptic neurotoxin from Crotalus durissusterrificus, was solved at 1.35 A resolution. It shows the architecture of the three disulfide-linked polypeptide chains (alpha, beta, and gamma) of the acidic subunit CA noncovalently complexed with the basic phospholipase A(2) (PLA(2)) subunit CB. The unique structural scaffold of the association of the CA and CB subunits indicates that posttranslational cleavage of the pro-CA precursor is a prerequisite for the assembly of the CA-CB complex. These studies provide novel structural insights to explain the role of the CA subunit in the mechanism of action of crotoxin. The crystal structure of the highly toxic and stable CA(2)CBb complex crystallized here allows us to identify key amino acid residues responsible for significant differences in the pharmacological activities of the two classes of crotoxin complexes. In particular, we show that critical residues Trp31 and Trp70 of the CBb subunit establish intermolecular polar contacts with Asp99 and Asp89, respectively, of the beta-chain of CA(2) and contribute to the stability and toxicity of the CA(2)CBb complex. These interactions also lead to decreased PLA(2) activity by partially blocking substrate access to the catalytic dyad and by masking several interfacial binding surface residues important for PLA(2) interaction with phospholipids. Identification of the binding interface between the CA subunits and the CB subunits of crotoxin is important for the structure-based design of antineurotoxic inhibitors. Since crotoxin displays numerous physiological functions, including antitumoral properties, knowledge of its three-dimensional structure will be useful for the understanding of these diverse effects.
 +
 
 +
Crystal structure of crotoxin reveals key residues involved in the stability and toxicity of this potent heterodimeric beta-neurotoxin.,Faure G, Xu H, Saul FA J Mol Biol. 2011 Sep 16;412(2):176-91. Epub 2011 Jul 23. PMID:21787789<ref>PMID:21787789</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 3r0l" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Current revision

Crystal structure of crotoxin

PDB ID 3r0l

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools