3tr5

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (02:28, 21 November 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/RF3_COXBU RF3_COXBU] Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP.[HAMAP-Rule:MF_00072]
[https://www.uniprot.org/uniprot/RF3_COXBU RF3_COXBU] Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP.[HAMAP-Rule:MF_00072]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Coxiella burnetii is a highly infectious bacterium and potential agent of bioterrorism. However, it has not been studied as extensively as other biological agents, and very few of its proteins have been structurally characterized. To address this situation, we undertook a study of critical metabolic enzymes in C. burnetii that have great potential as drug targets. We used high-throughput techniques to produce novel crystal structures of 48 of these proteins. We selected one protein, C. burnetii dihydrofolate reductase (CbDHFR), for additional work to demonstrate the value of these structures for structure-based drug design. This enzyme's structure reveals a feature in the substrate binding groove that is different between CbDHFR and human dihydrofolate reductase (hDFHR). We then identified a compound by in silico screening that exploits this binding groove difference, and demonstrated that this compound inhibits CbDHFR with at least 25-fold greater potency than hDHFR. Since this binding groove feature is shared by many other prokaryotes, the compound identified could form the basis of a novel antibacterial agent effective against a broad spectrum of pathogenic bacteria. This article is protected by copyright. All rights reserved.
 +
 +
Structural Genomics for Drug Design against the Pathogen Coxiella burnetii.,Franklin MC, Cheung J, Rudolph MJ, Burshteyn F, Cassidy M, Gary E, Hillerich B, Yao ZK, Carlier PR, Totrov M, Love JD Proteins. 2015 Jun 1. doi: 10.1002/prot.24841. PMID:26033498<ref>PMID:26033498</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 3tr5" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Structure of a peptide chain release factor 3 (prfC) from Coxiella burnetii

PDB ID 3tr5

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools