3u5s
From Proteopedia
(Difference between revisions)
| Line 12: | Line 12: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/ALR_HUMAN ALR_HUMAN] Isoform 1: FAD-dependent sulfhydryl oxidase that regenerates the redox-active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref> Isoform 2: May act as an autocrine hepatotrophic growth factor promoting liver regeneration.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref> | [https://www.uniprot.org/uniprot/ALR_HUMAN ALR_HUMAN] Isoform 1: FAD-dependent sulfhydryl oxidase that regenerates the redox-active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref> Isoform 2: May act as an autocrine hepatotrophic growth factor promoting liver regeneration.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Sulfur, a key contributor to biological reactivity, is not amendable to investigations by biological NMR spectroscopy. To utilize selenium as a surrogate, we have developed a generally applicable (77)Se isotopic enrichment method for heterologous proteins expressed in Escherichia coli. We demonstrate (77)Se NMR spectroscopy of multiple selenocysteine and selenomethionine residues in the sulfhydryl oxidase augmenter of liver regeneration (ALR). The resonances of the active-site residues were assigned by comparing the NMR spectra of ALR bound to oxidized and reduced flavin adenine dinucleotide. An additional resonance appears only in the presence of the reducing agent and disappears readily upon exposure to air and subsequent reoxidation of the flavin. Hence, (77)Se NMR spectroscopy can be used to report the local electronic environment of reactive and structural sulfur sites, as well as changes taking place in those locations during catalysis. | ||
| + | |||
| + | (77)Se Enrichment of Proteins Expands the Biological NMR Toolbox.,Schaefer SA, Dong M, Rubenstein RP, Wilkie WA, Bahnson BJ, Thorpe C, Rozovsky S J Mol Biol. 2012 Nov 15. pii: S0022-2836(12)00883-2. doi:, 10.1016/j.jmb.2012.11.011. PMID:23159557<ref>PMID:23159557</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| + | <div class="pdbe-citations 3u5s" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
Current revision
Selenium Substituted Human Augmenter of Liver Regeneration
| |||||||||||
