|
|
Line 3: |
Line 3: |
| <StructureSection load='3uqz' size='340' side='right'caption='[[3uqz]], [[Resolution|resolution]] 2.70Å' scene=''> | | <StructureSection load='3uqz' size='340' side='right'caption='[[3uqz]], [[Resolution|resolution]] 2.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3uqz]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/"diplococcus_pneumoniae"_(klein_1884)_weichselbaum_1886 "diplococcus pneumoniae" (klein 1884) weichselbaum 1886]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UQZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UQZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3uqz]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Streptococcus_pneumoniae Streptococcus pneumoniae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UQZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UQZ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SP_1266 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1313 "Diplococcus pneumoniae" (Klein 1884) Weichselbaum 1886])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3uqz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3uqz OCA], [https://pdbe.org/3uqz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3uqz RCSB], [https://www.ebi.ac.uk/pdbsum/3uqz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3uqz ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3uqz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3uqz OCA], [https://pdbe.org/3uqz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3uqz RCSB], [https://www.ebi.ac.uk/pdbsum/3uqz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3uqz ProSAT]</span></td></tr> |
| </table> | | </table> |
Line 23: |
Line 22: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Brooks, M A]] | + | [[Category: Streptococcus pneumoniae]] |
- | [[Category: Quevillon-Cheruel, S]] | + | [[Category: Brooks MA]] |
- | [[Category: Sierra-Gallay, I Li de la]] | + | [[Category: Li de la Sierra-Gallay I]] |
- | [[Category: Dna binding protein]] | + | [[Category: Quevillon-Cheruel S]] |
- | [[Category: Dna processing protein some]]
| + | |
- | [[Category: Sam and rossmann fold]]
| + | |
| Structural highlights
Publication Abstract from PubMed
Transformation promotes genome plasticity in bacteria via RecA-driven homologous recombination. In the Gram-positive human pathogen Streptococcus pneumoniae, the transformasome a multiprotein complex, internalizes, protects, and processes transforming DNA to generate chromosomal recombinants. Double-stranded DNA is internalized as single strands, onto which the transformation-dedicated DNA processing protein A (DprA) ensures the loading of RecA to form presynaptic filaments. We report that the structure of DprA consists of the association of a sterile alpha motif domain and a Rossmann fold and that DprA forms tail-to-tail dimers. The isolation of DprA self-interaction mutants revealed that dimerization is crucial for the formation of nucleocomplexes in vitro and for genetic transformation. Residues important for DprA-RecA interaction also were identified and mutated, establishing this interaction as equally important for transformation. Positioning of key interaction residues on the DprA structure revealed an overlap of DprA-DprA and DprA-RecA interaction surfaces. We propose a model in which RecA interaction promotes rearrangement or disruption of the DprA dimer, enabling the subsequent nucleation of RecA and its polymerization onto ssDNA.
Structure-function analysis of pneumococcal DprA protein reveals that dimerization is crucial for loading RecA recombinase onto DNA during transformation.,Quevillon-Cheruel S, Campo N, Mirouze N, Mortier-Barriere I, Brooks MA, Boudes M, Durand D, Soulet AL, Lisboa J, Noirot P, Martin B, van Tilbeurgh H, Noirot-Gros MF, Claverys JP, Polard P Proc Natl Acad Sci U S A. 2012 Aug 17. PMID:22904190[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Quevillon-Cheruel S, Campo N, Mirouze N, Mortier-Barriere I, Brooks MA, Boudes M, Durand D, Soulet AL, Lisboa J, Noirot P, Martin B, van Tilbeurgh H, Noirot-Gros MF, Claverys JP, Polard P. Structure-function analysis of pneumococcal DprA protein reveals that dimerization is crucial for loading RecA recombinase onto DNA during transformation. Proc Natl Acad Sci U S A. 2012 Aug 17. PMID:22904190 doi:10.1073/pnas.1205638109
|