6ayf
From Proteopedia
(Difference between revisions)
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/MCLN3_HUMAN MCLN3_HUMAN] Nonselective cation channel probably playing a role in the regulation of membrane trafficking events. Acts as Ca(2+)-permeable cation channel with inwardly rectifying activity (PubMed:18369318, PubMed:19497048, PubMed:19522758, PubMed:19885840). Mediates release of Ca(2+) from endosomes to the cytoplasm, contributes to endosomal acidification and is involved in the regulation of membrane trafficking and fusion in the endosomal pathway (PubMed:21245134). Does not seem to act as mechanosensory transduction channel in inner ear sensory hair cells. Proposed to play a critical role at the cochlear stereocilia ankle-link region during hair-bundle growth (By similarity). Involved in the regulation of autophagy (PubMed:19522758). Through association with GABARAPL2 may be involved in autophagosome formation possibly providing Ca(2+) for the fusion process (By similarity). Through a possible and probably tissue-specific heteromerization with MCOLN1 may be at least in part involved in many lysosome-dependent cellular events (PubMed:19885840). Possible heteromeric ion channel assemblies with TRPV5 show pharmacological similarity with TRPML3 (PubMed:23469151).[UniProtKB:Q8R4F0]<ref>PMID:18369318</ref> <ref>PMID:19497048</ref> <ref>PMID:19522758</ref> <ref>PMID:19885840</ref> <ref>PMID:21245134</ref> <ref>PMID:23469151</ref> | [https://www.uniprot.org/uniprot/MCLN3_HUMAN MCLN3_HUMAN] Nonselective cation channel probably playing a role in the regulation of membrane trafficking events. Acts as Ca(2+)-permeable cation channel with inwardly rectifying activity (PubMed:18369318, PubMed:19497048, PubMed:19522758, PubMed:19885840). Mediates release of Ca(2+) from endosomes to the cytoplasm, contributes to endosomal acidification and is involved in the regulation of membrane trafficking and fusion in the endosomal pathway (PubMed:21245134). Does not seem to act as mechanosensory transduction channel in inner ear sensory hair cells. Proposed to play a critical role at the cochlear stereocilia ankle-link region during hair-bundle growth (By similarity). Involved in the regulation of autophagy (PubMed:19522758). Through association with GABARAPL2 may be involved in autophagosome formation possibly providing Ca(2+) for the fusion process (By similarity). Through a possible and probably tissue-specific heteromerization with MCOLN1 may be at least in part involved in many lysosome-dependent cellular events (PubMed:19885840). Possible heteromeric ion channel assemblies with TRPV5 show pharmacological similarity with TRPML3 (PubMed:23469151).[UniProtKB:Q8R4F0]<ref>PMID:18369318</ref> <ref>PMID:19497048</ref> <ref>PMID:19522758</ref> <ref>PMID:19885840</ref> <ref>PMID:21245134</ref> <ref>PMID:23469151</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | TRPML3 channels are mainly localized to endolysosomes and play a critical role in the endocytic pathway. Their dysfunction causes deafness and pigmentation defects in mice. TRPML3 activity is inhibited by low endolysosomal pH. Here we present cryo-electron microscopy (cryo-EM) structures of human TRPML3 in the closed, agonist-activated, and low-pH-inhibited states, with resolutions of 4.06, 3.62, and 4.65 A, respectively. The agonist ML-SA1 lodges between S5 and S6 and opens an S6 gate. A polycystin-mucolipin domain (PMD) forms a luminal cap. S1 extends into this cap, forming a 'gating rod' that connects directly to a luminal pore loop, which undergoes dramatic conformational changes in response to low pH. S2 extends intracellularly and interacts with several intracellular regions to form a 'gating knob'. These unique structural features, combined with the results of electrophysiological studies, indicate a new mechanism by which luminal pH and other physiological modulators such as PIP2 regulate TRPML3 by changing S1 and S2 conformations. | ||
+ | |||
+ | Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states.,Zhou X, Li M, Su D, Jia Q, Li H, Li X, Yang J Nat Struct Mol Biol. 2017 Nov 6. doi: 10.1038/nsmb.3502. PMID:29106414<ref>PMID:29106414</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6ayf" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
TRPML3/ML-SA1 complex at pH 7.4
|
Categories: Homo sapiens | Large Structures | Jia Q | Li H | Li M | Li X | Su D | Yang J | Zhou X