|
|
Line 3: |
Line 3: |
| <StructureSection load='6c5w' size='340' side='right'caption='[[6c5w]], [[Resolution|resolution]] 3.10Å' scene=''> | | <StructureSection load='6c5w' size='340' side='right'caption='[[6c5w]], [[Resolution|resolution]] 3.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6c5w]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Metaq Metaq] and [http://en.wikipedia.org/wiki/Miscellaneous_nucleic_acid Miscellaneous nucleic acid]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6C5W OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6C5W FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6c5w]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Metarhizium_acridum_CQMa_102 Metarhizium acridum CQMa 102] and [https://en.wikipedia.org/wiki/Unidentified Unidentified]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6C5W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6C5W FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.1001024Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MAC_01752 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=655827 METAQ])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6c5w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6c5w OCA], [http://pdbe.org/6c5w PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6c5w RCSB], [http://www.ebi.ac.uk/pdbsum/6c5w PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6c5w ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6c5w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6c5w OCA], [https://pdbe.org/6c5w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6c5w RCSB], [https://www.ebi.ac.uk/pdbsum/6c5w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6c5w ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/MCU_METAQ MCU_METAQ] Highly selective calcium channel localized to the inner mitochondrial membrane, which mediates calcium uptake into the mitochondrial matrix (PubMed:29995856). Mitochondrial calcium homeostasis plays key roles in cellular physiology and regulates ATP production, cytoplasmic calcium signals and activation of cell death pathways (PubMed:29995856). Sufficient to operate as a pore-forming channel without the need of calcium-sensor or auxiliary subunit (PubMed:29995856).<ref>PMID:29995856</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 17: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6c5w" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6c5w" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Mitochondrial calcium uniporter|Mitochondrial calcium uniporter]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 22: |
Line 27: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Metaq]] | + | [[Category: Metarhizium acridum CQMa 102]] |
- | [[Category: Miscellaneous nucleic acid]] | + | [[Category: Unidentified]] |
- | [[Category: Fan, C]] | + | [[Category: Fan C]] |
- | [[Category: Fan, M]] | + | [[Category: Fan M]] |
- | [[Category: Fastman, N]] | + | [[Category: Fastman N]] |
- | [[Category: Feng, L]] | + | [[Category: Feng L]] |
- | [[Category: Zhang, J]] | + | [[Category: Zhang J]] |
- | [[Category: Membrane protein]]
| + | |
| Structural highlights
Function
MCU_METAQ Highly selective calcium channel localized to the inner mitochondrial membrane, which mediates calcium uptake into the mitochondrial matrix (PubMed:29995856). Mitochondrial calcium homeostasis plays key roles in cellular physiology and regulates ATP production, cytoplasmic calcium signals and activation of cell death pathways (PubMed:29995856). Sufficient to operate as a pore-forming channel without the need of calcium-sensor or auxiliary subunit (PubMed:29995856).[1]
Publication Abstract from PubMed
Mitochondrial calcium uptake is critical for regulating ATP production, intracellular calcium signalling, and cell death. This uptake is mediated by a highly selective calcium channel called the mitochondrial calcium uniporter (MCU). Here, we determined the structures of the pore-forming MCU proteins from two fungi by X-ray crystallography and single-particle cryo-electron microscopy. The stoichiometry, overall architecture, and individual subunit structure differed markedly from those described in the recent nuclear magnetic resonance structure of Caenorhabditis elegans MCU. We observed a dimer-of-dimer architecture across species and chemical environments, which was corroborated by biochemical experiments. Structural analyses and functional characterization uncovered the roles of key residues in the pore. These results reveal a new ion channel architecture, provide insights into calcium coordination, selectivity and conduction, and establish a structural framework for understanding the mechanism of mitochondrial calcium uniporter function.
X-ray and cryo-EM structures of the mitochondrial calcium uniporter.,Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, Feng L Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0330-9. doi:, 10.1038/s41586-018-0330-9. PMID:29995856[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, Feng L. X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0330-9. doi:, 10.1038/s41586-018-0330-9. PMID:29995856 doi:http://dx.doi.org/10.1038/s41586-018-0330-9
- ↑ Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, Feng L. X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0330-9. doi:, 10.1038/s41586-018-0330-9. PMID:29995856 doi:http://dx.doi.org/10.1038/s41586-018-0330-9
|