6wbf
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | == | + | ==n/a== |
- | <StructureSection load='6wbf' size='340' side='right'caption='[[6wbf]] | + | <StructureSection load='6wbf' size='340' side='right'caption='[[6wbf]]' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'> | + | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6WBF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6WBF FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy</td></tr> |
- | + | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6wbf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6wbf OCA], [https://pdbe.org/6wbf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6wbf RCSB], [https://www.ebi.ac.uk/pdbsum/6wbf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6wbf ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6wbf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6wbf OCA], [https://pdbe.org/6wbf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6wbf RCSB], [https://www.ebi.ac.uk/pdbsum/6wbf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6wbf ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == Function == | ||
- | [[https://www.uniprot.org/uniprot/PANX1_HUMAN PANX1_HUMAN]] Structural component of the gap junctions and the hemichannels. May play a role as a Ca(2+)-leak channel to regulate ER Ca(2+) homeostasis.<ref>PMID:16908669</ref> <ref>PMID:20829356</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation(1), apoptotic cell clearance(2) and human oocyte development(3). Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angstrom, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels. | ||
- | + | ==See Also== | |
- | + | *[[Pannexin|Pannexin]] | |
- | + | ||
- | + | ||
- | + | ||
- | == | + | |
- | + | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: Human]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: | + | [[Category: N/a]] |
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
n/a
|