8b6f
From Proteopedia
(Difference between revisions)
| Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8b6f]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Tetrahymena_thermophila_SB210 Tetrahymena thermophila SB210]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8B6F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8B6F FirstGlance]. <br> | <table><tr><td colspan='2'>[[8b6f]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Tetrahymena_thermophila_SB210 Tetrahymena thermophila SB210]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8B6F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8B6F FirstGlance]. <br> | ||
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=8Q1:S-[2- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.8Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=8Q1:~{S}-[2-[3-[[(2~{R})-3,3-dimethyl-2-oxidanyl-4-phosphonooxy-butanoyl]amino]propanoylamino]ethyl]+dodecanethioate'>8Q1</scene>, <scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=CDL:CARDIOLIPIN'>CDL</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=LPP:2-(HEXADECANOYLOXY)-1-[(PHOSPHONOOXY)METHYL]ETHYL+HEXADECANOATE'>LPP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NDP:NADPH+DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NDP</scene>, <scene name='pdbligand=PC1:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE'>PC1</scene>, <scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8b6f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8b6f OCA], [https://pdbe.org/8b6f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8b6f RCSB], [https://www.ebi.ac.uk/pdbsum/8b6f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8b6f ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8b6f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8b6f OCA], [https://pdbe.org/8b6f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8b6f RCSB], [https://www.ebi.ac.uk/pdbsum/8b6f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8b6f ProSAT]</span></td></tr> | ||
</table> | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/Q22E24_TETTS Q22E24_TETTS] | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane(1). Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III(2)-IV(2) supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization. | ||
| + | |||
| + | Structural basis of mitochondrial membrane bending by the I-II-III(2)-IV(2) supercomplex.,Muhleip A, Flygaard RK, Baradaran R, Haapanen O, Gruhl T, Tobiasson V, Marechal A, Sharma V, Amunts A Nature. 2023 Mar;615(7954):934-938. doi: 10.1038/s41586-023-05817-y. Epub 2023 , Mar 22. PMID:36949187<ref>PMID:36949187</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| + | <div class="pdbe-citations 8b6f" style="background-color:#fffaf0;"></div> | ||
| + | == References == | ||
| + | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
Current revision
Cryo-EM structure of NADH:ubiquinone oxidoreductase (complex-I) from respiratory supercomplex of Tetrahymena thermophila
| |||||||||||
