8b6g
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8b6g]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Tetrahymena_thermophila Tetrahymena thermophila]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8B6G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8B6G FirstGlance]. <br> | <table><tr><td colspan='2'>[[8b6g]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Tetrahymena_thermophila Tetrahymena thermophila]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8B6G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8B6G FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CDL:CARDIOLIPIN'>CDL | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CDL:CARDIOLIPIN'>CDL</scene>, <scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=PC1:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE'>PC1</scene>, <scene name='pdbligand=UQ8:UBIQUINONE-8'>UQ8</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8b6g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8b6g OCA], [https://pdbe.org/8b6g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8b6g RCSB], [https://www.ebi.ac.uk/pdbsum/8b6g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8b6g ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8b6g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8b6g OCA], [https://pdbe.org/8b6g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8b6g RCSB], [https://www.ebi.ac.uk/pdbsum/8b6g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8b6g ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/I7LX66_TETTS I7LX66_TETTS] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane(1). Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III(2)-IV(2) supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization. | ||
+ | |||
+ | Structural basis of mitochondrial membrane bending by the I-II-III(2)-IV(2) supercomplex.,Muhleip A, Flygaard RK, Baradaran R, Haapanen O, Gruhl T, Tobiasson V, Marechal A, Sharma V, Amunts A Nature. 2023 Mar;615(7954):934-938. doi: 10.1038/s41586-023-05817-y. Epub 2023 , Mar 22. PMID:36949187<ref>PMID:36949187</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 8b6g" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Cryo-EM structure of succinate dehydrogenase complex (complex-II) in respiratory supercomplex of Tetrahymena thermophila
|