1wbl
From Proteopedia
(Difference between revisions)
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/wb/1wbl_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/wb/1wbl_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1wbl ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1wbl ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The structure of basic Winged Bean Agglutinin (WBAI) with two dimeric molecules complexed with methyl-alpha-D-galactopyranoside in the asymmetric unit, has been determined by the molecular replacement method and refined with 2.5 A X-ray intensity data. The polypeptide chain of each monomer has the characteristic legume lectin tertiary fold. The structure clearly defines the lectin-carbohydrate interactions. It reveals how the unusually long variable loop in the binding region endows the lectin with its characteristic sugar specificity. The lectin forms non-canonical dimers of the type found in Erythrina corallodendron lectin (EcorL) even though glycosylation, unlike in EcorL, does not prevent the formation of canonical dimers. The structure thus further demonstrates that the mode of dimerisation of legume lectins is not necessarily determined by the covalently bound carbohydrate but is governed by features intrinsic to the protein. The present analysis and our earlier work on peanut lectin (PNA), show that legume lectins are a family of proteins in which small alterations in essentially the same tertiary structure lead to wide variations in quaternary association. A relationship among the non-canonical modes of dimeric association in legume lectins is presented. | ||
+ | |||
+ | Carbohydrate specificity and quaternary association in basic winged bean lectin: X-ray analysis of the lectin at 2.5 A resolution.,Prabu MM, Sankaranarayanan R, Puri KD, Sharma V, Surolia A, Vijayan M, Suguna K J Mol Biol. 1998 Mar 6;276(4):787-96. PMID:9500920<ref>PMID:9500920</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1wbl" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Agglutinin 3D structures|Agglutinin 3D structures]] | *[[Agglutinin 3D structures|Agglutinin 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
WINGED BEAN LECTIN COMPLEXED WITH METHYL-ALPHA-D-GALACTOSE
|