|
|
Line 3: |
Line 3: |
| <SX load='6d9j' size='340' side='right' viewer='molstar' caption='[[6d9j]], [[Resolution|resolution]] 3.20Å' scene=''> | | <SX load='6d9j' size='340' side='right' viewer='molstar' caption='[[6d9j]], [[Resolution|resolution]] 3.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6d9j]] is a 85 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human] and [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D9J OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6D9J FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6d9j]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D9J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6D9J FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.2Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">EEF2, EF2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6d9j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d9j OCA], [http://pdbe.org/6d9j PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6d9j RCSB], [http://www.ebi.ac.uk/pdbsum/6d9j PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6d9j ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6d9j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d9j OCA], [https://pdbe.org/6d9j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6d9j RCSB], [https://www.ebi.ac.uk/pdbsum/6d9j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6d9j ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/EF2_HUMAN EF2_HUMAN]] Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. [[http://www.uniprot.org/uniprot/U3KPD5_RABIT U3KPD5_RABIT]] Binds to the 23S rRNA.[RuleBase:RU000576] [[http://www.uniprot.org/uniprot/G1SS70_RABIT G1SS70_RABIT]] May play a role during erythropoiesis through regulation of transcription factor DDIT3.[HAMAP-Rule:MF_03122] | + | [https://www.uniprot.org/uniprot/RL8_RABIT RL8_RABIT] Component of the large ribosomal subunit (PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857).<ref>PMID:25601755</ref> <ref>PMID:26245381</ref> <ref>PMID:27863242</ref> <ref>PMID:30517857</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 26: |
Line 26: |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Human]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Oryctolagus cuniculus]] | | [[Category: Oryctolagus cuniculus]] |
- | [[Category: Fernandez, I S]] | + | [[Category: Fernandez IS]] |
- | [[Category: Pisarev, A V]] | + | [[Category: Pisarev AV]] |
- | [[Category: Pisareva, V P]] | + | [[Category: Pisareva VP]] |
- | [[Category: Crpv ire]]
| + | |
- | [[Category: Mammalian]]
| + | |
- | [[Category: Ribosome]]
| + | |
| Structural highlights
Function
RL8_RABIT Component of the large ribosomal subunit (PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857).[1] [2] [3] [4]
Publication Abstract from PubMed
Co-opting the cellular machinery for protein production is a compulsory requirement for viruses. The Cricket Paralysis Virus employs an Internal Ribosomal Entry Site (CrPV-IRES) to express its structural genes in the late stage of infection. Ribosome hijacking is achieved by a sophisticated use of molecular mimicry to tRNA and mRNA, employed to manipulate intrinsically dynamic components of the ribosome. Binding and translocation through the ribosome is required for this IRES to initiate translation. We report two structures, solved by single particle electron cryo-microscopy (cryoEM), of a double translocated CrPV-IRES with aminoacyl-tRNA in the peptidyl site (P site) of the ribosome. CrPV-IRES adopts a previously unseen conformation, mimicking the acceptor stem of a canonical E site tRNA. The structures suggest a mechanism for the positioning of the first aminoacyl-tRNA shared with the distantly related Hepatitis C Virus IRES.
Dual tRNA mimicry in the Cricket Paralysis Virus IRES uncovers an unexpected similarity with the Hepatitis C Virus IRES.,Pisareva VP, Pisarev AV, Fernandez IS Elife. 2018 Jun 1;7. pii: 34062. doi: 10.7554/eLife.34062. PMID:29856316[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Muhs M, Hilal T, Mielke T, Skabkin MA, Sanbonmatsu KY, Pestova TV, Spahn CM. Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES. Mol Cell. 2015 Feb 5;57(3):422-432. doi: 10.1016/j.molcel.2014.12.016. Epub 2015 , Jan 15. PMID:25601755 doi:http://dx.doi.org/10.1016/j.molcel.2014.12.016
- ↑ Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381 doi:http://dx.doi.org/10.1038/nature14896
- ↑ Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242 doi:http://dx.doi.org/10.1016/j.cell.2016.10.046
- ↑ Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T, Dabrowski M, Burger J, Mielke T, Blanchard SC, Spahn CMT, Budkevich TV. tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Cell Rep. 2018 Dec 4;25(10):2676-2688.e7. doi: 10.1016/j.celrep.2018.11.040. PMID:30517857 doi:http://dx.doi.org/10.1016/j.celrep.2018.11.040
- ↑ Pisareva VP, Pisarev AV, Fernandez IS. Dual tRNA mimicry in the Cricket Paralysis Virus IRES uncovers an unexpected similarity with the Hepatitis C Virus IRES. Elife. 2018 Jun 1;7. pii: 34062. doi: 10.7554/eLife.34062. PMID:29856316 doi:http://dx.doi.org/10.7554/eLife.34062
|