1g0b

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:43, 12 March 2025) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g0/1g0b_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g0/1g0b_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1g0b ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1g0b ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Initial crystallographic studies suggested that fully liganded mammalian hemoglobin can adopt only a single quaternary structure, the quaternary R structure. However, more recent crystallographic studies revealed the existence of a second quaternary structure for liganded hemoglobin, the quaternary R2 structure. Since these quaternary structures can be crystallized, both must be energetically accessible structures that coexist in solution. Unanswered questions include (i) the relative abundance of the R and R2 structures under various solution conditions and (ii) whether other quaternary structures are energetically accessible for the liganded alpha(2)beta(2) hemoglobin tetramer. Although crystallographic methods cannot directly answer the first question, they represent the most direct and most accurate approach to answering the second question. We now have determined and refined three different crystal structures of bovine carbonmonoxyhemoglobin. These structures provide clear evidence that the dimer-dimer interface of liganded hemoglobin has a wide range of energetically accessible structures that are related to each other by a simple sliding motion. The dimer-dimer interface acts as a "molecular slide bearing" that allows the two alpha beta dimers to slide back and forth without greatly altering the number or the nature of the intersubunit contacts. Since the general stereochemical features of this interface are not unusual, it is likely that interface sliding of the kind displayed by fully liganded hemoglobin plays important structural and functional roles in many other protein assemblies.
 +
 +
Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin.,Mueser TC, Rogers PH, Arnone A Biochemistry. 2000 Dec 19;39(50):15353-64. PMID:11112521<ref>PMID:11112521</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1g0b" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Hemoglobin 3D structures|Hemoglobin 3D structures]]
*[[Hemoglobin 3D structures|Hemoglobin 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

CARBONMONOXY LIGANDED EQUINE HEMOGLOBIN PH 8.5

PDB ID 1g0b

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools