1pnv

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (22:10, 26 March 2025) (edit) (undo)
 
Line 5: Line 5:
<table><tr><td colspan='2'>[[1pnv]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Amycolatopsis_orientalis Amycolatopsis orientalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PNV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PNV FirstGlance]. <br>
<table><tr><td colspan='2'>[[1pnv]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Amycolatopsis_orientalis Amycolatopsis orientalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PNV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PNV FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
-
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3FG:(2S)-AMINO(3,5-DIHYDROXYPHENYL)ETHANOIC+ACID'>3FG</scene>, <scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=GHP:(2R)-AMINO(4-HYDROXYPHENYL)ETHANOIC+ACID'>GHP</scene>, <scene name='pdbligand=MLU:N-METHYL-D-LEUCINE'>MLU</scene>, <scene name='pdbligand=OMY:(BETAR)-3-CHLORO-BETA-HYDROXY-L-TYROSINE'>OMY</scene>, <scene name='pdbligand=OMZ:(BETAR)-3-CHLORO-BETA-HYDROXY-D-TYROSINE'>OMZ</scene>, <scene name='pdbligand=PRD_000204:Vancomycin'>PRD_000204</scene>, <scene name='pdbligand=RER:(1R,3S,4S,5S)-3-AMINO-2,3,6-TRIDEOXY-3-METHYL-ALPHA-L-ARABINO-HEXOPYRANOSE'>RER</scene>, <scene name='pdbligand=TYD:THYMIDINE-5-DIPHOSPHATE'>TYD</scene></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3FG:(2S)-AMINO(3,5-DIHYDROXYPHENYL)ETHANOIC+ACID'>3FG</scene>, <scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=GHP:(2R)-AMINO(4-HYDROXYPHENYL)ETHANOIC+ACID'>GHP</scene>, <scene name='pdbligand=MLU:N-METHYL-D-LEUCINE'>MLU</scene>, <scene name='pdbligand=OMY:(BETAR)-3-CHLORO-BETA-HYDROXY-L-TYROSINE'>OMY</scene>, <scene name='pdbligand=OMZ:(BETAR)-3-CHLORO-BETA-HYDROXY-D-TYROSINE'>OMZ</scene>, <scene name='pdbligand=RER:(1R,3S,4S,5S)-3-AMINO-2,3,6-TRIDEOXY-3-METHYL-ALPHA-L-ARABINO-HEXOPYRANOSE'>RER</scene>, <scene name='pdbligand=TYD:THYMIDINE-5-DIPHOSPHATE'>TYD</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pnv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pnv OCA], [https://pdbe.org/1pnv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pnv RCSB], [https://www.ebi.ac.uk/pdbsum/1pnv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pnv ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pnv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pnv OCA], [https://pdbe.org/1pnv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pnv RCSB], [https://www.ebi.ac.uk/pdbsum/1pnv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pnv ProSAT]</span></td></tr>
</table>
</table>
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pn/1pnv_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pn/1pnv_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pnv ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pnv ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
During the biosynthesis of the vancomycin-class antibiotic chloroeremomycin, TDP-epi-vancosaminyltransferase GtfA catalyzes the attachment of 4-epi-vancosamine from a TDP donor to the beta-OHTyr-6 of the aglycone cosubstrate. Glycosyltransferases from this pathway are potential tools for the combinatorial design of new antibiotics that are effective against vancomycin-resistant bacterial strains. These enzymes are members of the GT-B glycosyltransferase superfamily, which share a homologous bidomain topology. We present the 2.8-A crystal structures of GtfA complexes with vancomycin and the natural monoglycosylated peptide substrate, representing the first direct observation of acceptor substrate binding among closely related glycosyltransferases. The acceptor substrates bind to the N-terminal domain such that the aglycone substrate's reactive hydroxyl group hydrogen bonds to the side chains of Ser-10 and Asp-13, thus identifying these as residues of potential catalytic importance. As well as an open form of the enzyme, the crystal structures have revealed a closed form in which a TDP ligand is bound at a donor substrate site in the interdomain cleft, thereby illustrating not only binding interactions, but the conformational changes in the enzyme that accompany substrate binding.
 +
 +
Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway.,Mulichak AM, Losey HC, Lu W, Wawrzak Z, Walsh CT, Garavito RM Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9238-43. Epub 2003 Jul 21. PMID:12874381<ref>PMID:12874381</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1pnv" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==

Current revision

Crystal Structure of TDP-epi-Vancosaminyltransferase GtfA in complexes with TDP and Vancomycin

PDB ID 1pnv

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools