|
|
Line 3: |
Line 3: |
| <StructureSection load='6eeq' size='340' side='right'caption='[[6eeq]], [[Resolution|resolution]] 2.60Å' scene=''> | | <StructureSection load='6eeq' size='340' side='right'caption='[[6eeq]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6eeq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhorb Rhorb]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EEQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6EEQ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6eeq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhodiola_rosea Rhodiola rosea]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EEQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6EEQ FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=LLP:(2S)-2-AMINO-6-[[3-HYDROXY-2-METHYL-5-(PHOSPHONOOXYMETHYL)PYRIDIN-4-YL]METHYLIDENEAMINO]HEXANOIC+ACID'>LLP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.600086Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[6eei|6eei]], [[6eem|6eem]], [[6eew|6eew]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=LLP:(2S)-2-AMINO-6-[[3-HYDROXY-2-METHYL-5-(PHOSPHONOOXYMETHYL)PYRIDIN-4-YL]METHYLIDENEAMINO]HEXANOIC+ACID'>LLP</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6eeq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6eeq OCA], [https://pdbe.org/6eeq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6eeq RCSB], [https://www.ebi.ac.uk/pdbsum/6eeq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6eeq ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6eeq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6eeq OCA], [https://pdbe.org/6eeq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6eeq RCSB], [https://www.ebi.ac.uk/pdbsum/6eeq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6eeq ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/HPAAS_RHORB HPAAS_RHORB] Catalyzes the production of 4-hydroxyphenylacetaldehyde (HPAA) directly from L-tyrosine, tyramine not being formed as an intermediate.<ref>PMID:29277428</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Rhorb]] | + | [[Category: Rhodiola rosea]] |
- | [[Category: Chiang, Y]] | + | [[Category: Chiang Y]] |
- | [[Category: Smith, T]] | + | [[Category: Smith T]] |
- | [[Category: Torrens-Spence, M P]] | + | [[Category: Torrens-Spence MP]] |
- | [[Category: Vicent, M A]] | + | [[Category: Vicent MA]] |
- | [[Category: Wang, Y]] | + | [[Category: Wang Y]] |
- | [[Category: Weng, J K]] | + | [[Category: Weng JK]] |
- | [[Category: Aromatic amino acid decarboxylase]]
| + | |
- | [[Category: Lyase]]
| + | |
| Structural highlights
Function
HPAAS_RHORB Catalyzes the production of 4-hydroxyphenylacetaldehyde (HPAA) directly from L-tyrosine, tyramine not being formed as an intermediate.[1]
Publication Abstract from PubMed
Radiation of the plant pyridoxal 5'-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.
Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins.,Torrens-Spence MP, Chiang YC, Smith T, Vicent MA, Wang Y, Weng JK Proc Natl Acad Sci U S A. 2020 May 5. pii: 1920097117. doi:, 10.1073/pnas.1920097117. PMID:32371491[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Torrens-Spence MP, Pluskal T, Li FS, Carballo V, Weng JK. Complete Pathway Elucidation and Heterologous Reconstitution of Rhodiola Salidroside Biosynthesis. Mol Plant. 2018 Jan 8;11(1):205-217. PMID:29277428 doi:10.1016/j.molp.2017.12.007
- ↑ Torrens-Spence MP, Chiang YC, Smith T, Vicent MA, Wang Y, Weng JK. Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Proc Natl Acad Sci U S A. 2020 May 5. pii: 1920097117. doi:, 10.1073/pnas.1920097117. PMID:32371491 doi:http://dx.doi.org/10.1073/pnas.1920097117
|