|
|
Line 3: |
Line 3: |
| <SX load='6f1u' size='340' side='right' viewer='molstar' caption='[[6f1u]], [[Resolution|resolution]] 3.40Å' scene=''> | | <SX load='6f1u' size='340' side='right' viewer='molstar' caption='[[6f1u]], [[Resolution|resolution]] 3.40Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6f1u]] is a 13 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human], [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice], [http://en.wikipedia.org/wiki/Pig Pig] and [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6F1U OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6F1U FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6f1u]] is a 13 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens], [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [https://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6F1U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6F1U FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.4Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6f1t|6f1t]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">DYNC1H1, DHC1, DNCH1, DNCL, DNECL, DYHC, KIAA0325 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9823 PIG]), DYNC1I2, DNCI2, DNCIC2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), Bicdl1, Bicdr1, Ccdc64 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6f1u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6f1u OCA], [https://pdbe.org/6f1u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6f1u RCSB], [https://www.ebi.ac.uk/pdbsum/6f1u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6f1u ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6f1u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6f1u OCA], [http://pdbe.org/6f1u PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6f1u RCSB], [http://www.ebi.ac.uk/pdbsum/6f1u PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6f1u ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
- | == Disease == | |
- | [[http://www.uniprot.org/uniprot/DYHC1_HUMAN DYHC1_HUMAN]] Autosomal dominant childhood-onset proximal spinal muscular atrophy without contractures;Autosomal dominant non-syndromic intellectual disability;Autosomal dominant Charcot-Marie-Tooth disease type 2O. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. | |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/DYHC1_HUMAN DYHC1_HUMAN]] Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074).<ref>PMID:27462074</ref> [[http://www.uniprot.org/uniprot/DC1I2_HUMAN DC1I2_HUMAN]] Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. The intermediate chains mediate the binding of dynein to dynactin via its 150 kDa component (p150-glued) DCNT1. Involved in membrane-transport, such as Golgi apparatus, late endosomes and lysosomes. [[http://www.uniprot.org/uniprot/BICL1_MOUSE BICL1_MOUSE]] Component of secretory vesicle machinery in developing neurons that acts as a regulator of neurite outgrowth. Regulates the secretory vesicle transport by controlling the accumulation of Rab6-containing secretory vesicles in the pericentrosomal region restricting anterograde secretory transport during the early phase of neuronal differentiation, thereby inhibiting neuritogenesis.<ref>PMID:20360680</ref> | + | [https://www.uniprot.org/uniprot/ACTZ_PIG ACTZ_PIG] Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules.<ref>PMID:25814576</ref> <ref>PMID:28602352</ref> <ref>PMID:29420470</ref> <ref>PMID:33734450</ref> <ref>PMID:36071160</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
| + | *[[Actin-related protein 3D structures|Actin-related protein 3D structures]] |
| *[[Dynactin|Dynactin]] | | *[[Dynactin|Dynactin]] |
| *[[Dynein 3D structures|Dynein 3D structures]] | | *[[Dynein 3D structures|Dynein 3D structures]] |
Line 31: |
Line 29: |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lk3 transgenic mice]] | + | [[Category: Mus musculus]] |
- | [[Category: Pig]]
| + | |
| [[Category: Sus scrofa]] | | [[Category: Sus scrofa]] |
- | [[Category: Carter, A P]] | + | [[Category: Carter AP]] |
- | [[Category: Elshenawy, M M]] | + | [[Category: Elshenawy MM]] |
- | [[Category: Lau, C K]] | + | [[Category: Lau CK]] |
- | [[Category: Morales-Rios, E]] | + | [[Category: Morales-Rios E]] |
- | [[Category: Motz, C]] | + | [[Category: Motz C]] |
- | [[Category: Urnavicius, L]] | + | [[Category: Urnavicius L]] |
- | [[Category: Yildiz, A]] | + | [[Category: Yildiz A]] |
- | [[Category: Cargo adaptor]]
| + | |
- | [[Category: Complex]]
| + | |
- | [[Category: Cryo-em]]
| + | |
- | [[Category: Motor protein]]
| + | |
| Structural highlights
Function
ACTZ_PIG Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Dynein and its cofactor dynactin form a highly processive microtubule motor in the presence of an activating adaptor, such as BICD2. Different adaptors link dynein and dynactin to distinct cargoes. Here we use electron microscopy and single-molecule studies to show that adaptors can recruit a second dynein to dynactin. Whereas BICD2 is biased towards recruiting a single dynein, the adaptors BICDR1 and HOOK3 predominantly recruit two dyneins. We find that the shift towards a double dynein complex increases both the force and speed of the microtubule motor. Our 3.5 A resolution cryo-electron microscopy reconstruction of a dynein tail-dynactin-BICDR1 complex reveals how dynactin can act as a scaffold to coordinate two dyneins side-by-side. Our work provides a structural basis for understanding how diverse adaptors recruit different numbers of dyneins and regulate the motile properties of the dynein-dynactin transport machine.
Cryo-EM shows how dynactin recruits two dyneins for faster movement.,Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C, Yildiz A, Carter AP Nature. 2018 Feb 7;554(7691):202-206. doi: 10.1038/nature25462. PMID:29420470[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Urnavicius L, Zhang K, Diamant AG, Motz C, Schlager MA, Yu M, Patel NA, Robinson CV, Carter AP. The structure of the dynactin complex and its interaction with dynein. Science. 2015 Mar 27;347(6229):1441-6. doi: 10.1126/science.aaa4080. Epub 2015, Feb 12. PMID:25814576 doi:http://dx.doi.org/10.1126/science.aaa4080
- ↑ Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP. Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated. Cell. 2017 Jun 15;169(7):1303-1314.e18. doi: 10.1016/j.cell.2017.05.025. Epub, 2017 Jun 8. PMID:28602352 doi:http://dx.doi.org/10.1016/j.cell.2017.05.025
- ↑ Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C, Yildiz A, Carter AP. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature. 2018 Feb 7;554(7691):202-206. doi: 10.1038/nature25462. PMID:29420470 doi:http://dx.doi.org/10.1038/nature25462
- ↑ Lau CK, O'Reilly FJ, Santhanam B, Lacey SE, Rappsilber J, Carter AP. Cryo-EM reveals the complex architecture of dynactin's shoulder region and pointed end. EMBO J. 2021 Apr 15;40(8):e106164. PMID:33734450 doi:10.15252/embj.2020106164
- ↑ Chaaban S, Carter AP. Structure of dynein-dynactin on microtubules shows tandem adaptor binding. Nature. 2022 Sep 7. pii: 10.1038/s41586-022-05186-y. doi:, 10.1038/s41586-022-05186-y. PMID:36071160 doi:http://dx.doi.org/10.1038/s41586-022-05186-y
- ↑ Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C, Yildiz A, Carter AP. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature. 2018 Feb 7;554(7691):202-206. doi: 10.1038/nature25462. PMID:29420470 doi:http://dx.doi.org/10.1038/nature25462
|