User:Elizabeth Yowell/ SandboxFinal

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 22: Line 22:
A common way to create vaccines is through the usage of antibodies.<scene name='10/1077473/Antibody_overview/2'>Antibodies</scene> are inserted into the body that mimic ACE2, due to the similarities with ACE2, when COVID-19 spike protein enters the body, they <scene name='10/1077473/Antibody/4'>bind</scene> to these ACE2 mimicking antibodies that create a 90% neutralizing response for targeting the RBD. With this being said, this method of treatment is difficult for long term use due to the evolution of the viral cells <ref name="Zhang">DOI:10.1016/S2666-5247(23)00011-3</ref>.
A common way to create vaccines is through the usage of antibodies.<scene name='10/1077473/Antibody_overview/2'>Antibodies</scene> are inserted into the body that mimic ACE2, due to the similarities with ACE2, when COVID-19 spike protein enters the body, they <scene name='10/1077473/Antibody/4'>bind</scene> to these ACE2 mimicking antibodies that create a 90% neutralizing response for targeting the RBD. With this being said, this method of treatment is difficult for long term use due to the evolution of the viral cells <ref name="Zhang">DOI:10.1016/S2666-5247(23)00011-3</ref>.
-
===AHB2 and LCB1/LCB3 Specifically===
+
==Inhibitor Development==
Protein inhibitors were thought of as a new idea for creating vaccines due to their smaller size and better stability compared to antibody vaccines<ref name="Cao">DOI:10.1126/science.abd9909</ref>. These protein inhibitors are also referred to as mini-binders, they interact with the ACE2 receptor binding domain, <scene name='10/1075220/Spikeblockedbyminibinder/2'>preventing association of the viral cell with ACE-2.</scene>
Protein inhibitors were thought of as a new idea for creating vaccines due to their smaller size and better stability compared to antibody vaccines<ref name="Cao">DOI:10.1126/science.abd9909</ref>. These protein inhibitors are also referred to as mini-binders, they interact with the ACE2 receptor binding domain, <scene name='10/1075220/Spikeblockedbyminibinder/2'>preventing association of the viral cell with ACE-2.</scene>

Revision as of 18:28, 13 April 2025

Contents

Engineered Protein Inhibitors for SARS-CoV-2 Entry

SARS-CoV-2 Spike Protein Bound to Minibinders (PDB 7jzl)

Drag the structure with the mouse to rotate


References

Cao, L., Goreshnik, I., Coventry, B., Case, J.B., Miller, L., Kozodoy, L., Chen, R.E., Carter, L., Walls, A.C., Park, Y., Strauch, E., Stewart, L., Diamond, M.S., Veesler, D., & Baker, D. De novo design of picomolar SARS-CoV-2 mini protein inhibitors. Science 370, 426-431 (2020). https://doi.org/10.1126/science.abd9909

https://www.who.int/europe/emergencies/situations/covid-19

https://pmc.ncbi.nlm.nih.gov/articles/PMC9786537/#:~:text=The%20receptor%2Dbinding%20domain%20(RBD,that%20initiates%20the%20viral%20transmission.

https://www.nature.com/articles/s41580-021-00418-x#citeas

https://www.science.org/doi/10.1126/science.abd9909

Zhang, Haoran et al. Advances in developing ACE2 derivatives against SARS-CoV-2. The Lancet Microbe, Volume 4, Issue 5, e369 - e378 (2023). https://doi.org/10.1016/S2666-5247(23)00011-3


PDB Files

[1]https://www.rcsb.org/structure/7UHB

Student Contributors

  • Giavanna Yowell
  • Shea Bailey
  • Matthew Pereira

Proteopedia Page Contributors and Editors (what is this?)

Elizabeth Yowell

Personal tools