User:Marcos Ngo/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 22: Line 22:
</table>
</table>
-
hNTHL1 consists of <scene name='10/1077482/Two_domains/2'>two alpha-helical domains</scene> connected by two linkers. <scene name='10/1077482/Ncfedomain1/5'>Domain 1</scene> has the iron sulfur cluster, N- and C-termini, and a catalytic residue ('''Asp 239'''). <scene name='10/1077482/Domain2features/3'>Domain 2</scene> has six helical barrels, hairpin-helix-hairpin, and the final catalytic residue ('''Lys 220'''). The <scene name='10/1077482/Proglyhhh/1'>HhH</scene> motif has a characteristic glycine and proline-rich loop. The HhH allows for hydrogen bond interactions with the DNA backbone <ref>PMID:12840008</ref><ref>https://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=2160&context=graddis</ref><ref>PMID:1283262</ref>.
+
hNTHL1 consists of <scene name='10/1077482/Two_domains/2'>two alpha-helical domains</scene> connected by two linkers. <scene name='10/1077482/Ncfedomain1/5'>Domain 1</scene> has the iron sulfur cluster, N- and C-termini, and a catalytic residue ('''Asp 239'''). <scene name='10/1077482/Domain2features/3'>Domain 2</scene> has six helical barrels, helix-hairpin-helix, and the other catalytic residue ('''Lys 220'''). The <scene name='10/1077482/Proglyhhh/1'>HhH</scene> motif has a characteristic glycine and proline-rich loop. The HhH allows for hydrogen bond interactions with the DNA backbone <ref>PMID:12840008</ref><ref>https://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=2160&context=graddis</ref><ref>PMID:1283262</ref>.
This structure is captured in an <scene name='10/1077482/Open_conformation/1'>open conformation</scene> where the catalytic residues Lys220 and Asp239 are positioned approximately 25 Å apart, which is too far for catalysis. This implies that a conformational change is required to assemble the active site. To find the closed conformation, an engineered chimera was made by swapping the <scene name='10/1077482/Linker1/1'>flexible interdomain linker</scene> in human NTHL1 with a shorter, more rigid linker from a bacterial homolog. The <scene name='10/1077482/Chimera/1'>hNTHL1Δ63 chimera</scene> structure adopts a closed conformation where Lys220 and Asp239 are approximately 5 Å apart, which mimics the configuration seen in catalytically active homologs. The linker is not fully modeled due to disorder in the electron density map <ref>PMID:34871433</ref>.
This structure is captured in an <scene name='10/1077482/Open_conformation/1'>open conformation</scene> where the catalytic residues Lys220 and Asp239 are positioned approximately 25 Å apart, which is too far for catalysis. This implies that a conformational change is required to assemble the active site. To find the closed conformation, an engineered chimera was made by swapping the <scene name='10/1077482/Linker1/1'>flexible interdomain linker</scene> in human NTHL1 with a shorter, more rigid linker from a bacterial homolog. The <scene name='10/1077482/Chimera/1'>hNTHL1Δ63 chimera</scene> structure adopts a closed conformation where Lys220 and Asp239 are approximately 5 Å apart, which mimics the configuration seen in catalytically active homologs. The linker is not fully modeled due to disorder in the electron density map <ref>PMID:34871433</ref>.

Revision as of 00:31, 28 April 2025

Human NTHL1

PDB ID 7rds

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Marcos Ngo

Personal tools