9bqx
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Membrane-bound AMPH-1 tube in the presence of GTP== | |
+ | <StructureSection load='9bqx' size='340' side='right'caption='[[9bqx]], [[Resolution|resolution]] 7.90Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[9bqx]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Caenorhabditis_elegans Caenorhabditis elegans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=9BQX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=9BQX FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 7.9Å</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=9bqx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=9bqx OCA], [https://pdbe.org/9bqx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=9bqx RCSB], [https://www.ebi.ac.uk/pdbsum/9bqx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=9bqx ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/Q21004_CAEEL Q21004_CAEEL] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Membrane-enclosed transport carriers sort biological molecules between stations in the cell in a dynamic process that is fundamental to the physiology of eukaryotic organisms. While much is known about the formation and release of carriers from specific intracellular membranes, the mechanism of carrier formation from the recycling endosome, a compartment central to cellular signaling, remains to be resolved. In Caenorhabditis elegans, formation of transport carriers from the recycling endosome requires the dynamin-like, Eps15-homology domain (EHD) protein, RME-1, functioning with the Bin/Amphiphysin/Rvs (N-BAR) domain protein, AMPH-1. Here we show, using a free-solution single-particle technique known as burst analysis spectroscopy (BAS), that AMPH-1 alone creates small, tubular-vesicular products from large, unilamellar vesicles by membrane fission. Membrane fission requires the amphipathic H0 helix of AMPH-1 and is slowed in the presence of RME-1. Unexpectedly, AMPH-1-induced membrane fission is stimulated in the presence of GTP. Furthermore, the GTP-stimulated membrane fission activity seen for AMPH-1 is recapitulated by the heterodimeric N-BAR amphiphysin protein from yeast, Rvs161/167p, strongly suggesting that GTP-stimulated membrane fission is a general property of this important class of N-BAR proteins. | ||
- | + | GTP-stimulated membrane fission by the N-BAR protein AMPH-1.,Kustigian L, Gong X, Gai W, Thongchol J, Zhang J, Puchalla J, Carr CM, Rye HS Traffic. 2023 Jan;24(1):34-47. doi: 10.1111/tra.12875. Epub 2022 Dec 13. PMID:36435193<ref>PMID:36435193</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 9bqx" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Caenorhabditis elegans]] | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Gai W]] | ||
+ | [[Category: Rye H]] | ||
+ | [[Category: Wang Y]] | ||
+ | [[Category: Zhang J]] |
Current revision
Membrane-bound AMPH-1 tube in the presence of GTP
|