6c1h

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (05:40, 28 May 2025) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/ACTS_RABIT ACTS_RABIT] Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells.
[https://www.uniprot.org/uniprot/ACTS_RABIT ACTS_RABIT] Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Myosins adjust their power outputs in response to mechanical loads in an isoform-dependent manner, resulting in their ability to dynamically adapt to a range of motile challenges. Here, we reveal the structural basis for force-sensing based on near-atomic resolution structures of one rigor and two ADP-bound states of myosin-IB (myo1b) bound to actin, determined by cryo-electron microscopy. The two ADP-bound states are separated by a 25 degrees rotation of the lever. The lever of the first ADP state is rotated toward the pointed end of the actin filament and forms a previously unidentified interface with the N-terminal subdomain, which constitutes the upper half of the nucleotide-binding cleft. This pointed-end orientation of the lever blocks ADP release by preventing the N-terminal subdomain from the pivoting required to open the nucleotide binding site, thus revealing how myo1b is inhibited by mechanical loads that restrain lever rotation. The lever of the second ADP state adopts a rigor-like orientation, stabilized by class-specific elements of myo1b. We identify a role for this conformation as an intermediate in the ADP release pathway. Moreover, comparison of our structures with other myosins reveals structural diversity in the actomyosin binding site, and we reveal the high-resolution structure of actin-bound phalloidin, a potent stabilizer of filamentous actin. These results provide a framework to understand the spectrum of force-sensing capacities among the myosin superfamily.
 +
 +
High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing.,Mentes A, Huehn A, Liu X, Zwolak A, Dominguez R, Shuman H, Ostap EM, Sindelar CV Proc Natl Acad Sci U S A. 2018 Jan 22. pii: 1718316115. doi:, 10.1073/pnas.1718316115. PMID:29358376<ref>PMID:29358376</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6c1h" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
Line 15: Line 24:
*[[Calmodulin 3D structures|Calmodulin 3D structures]]
*[[Calmodulin 3D structures|Calmodulin 3D structures]]
*[[Myosin 3D Structures|Myosin 3D Structures]]
*[[Myosin 3D Structures|Myosin 3D Structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</SX>
</SX>

Current revision

High-Resolution Cryo-EM Structures of Actin-bound Myosin States Reveal the Mechanism of Myosin Force Sensing

6c1h, resolution 3.90Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools