8dpf
From Proteopedia
(Difference between revisions)
Line 5: | Line 5: | ||
<table><tr><td colspan='2'>[[8dpf]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DPF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DPF FirstGlance]. <br> | <table><tr><td colspan='2'>[[8dpf]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DPF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DPF FirstGlance]. <br> | ||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.84Å</td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.84Å</td></tr> | ||
- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CLR:CHOLESTEROL'>CLR</scene>, <scene name='pdbligand=T4U:( | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CLR:CHOLESTEROL'>CLR</scene>, <scene name='pdbligand=T4U:(5~{R})-7-chloranyl-5-methyl-2,3,4,5-tetrahydro-1~{H}-3-benzazepine'>T4U</scene></td></tr> |
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dpf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dpf OCA], [https://pdbe.org/8dpf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dpf RCSB], [https://www.ebi.ac.uk/pdbsum/8dpf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dpf ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dpf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dpf OCA], [https://pdbe.org/8dpf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dpf RCSB], [https://www.ebi.ac.uk/pdbsum/8dpf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dpf ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 14: | Line 14: | ||
RNA editing is a process by which post-transcriptional changes of mRNA nucleotides alter protein function through modification of the amino acid content. The 5HT(2C) serotonin receptor, which undergoes 32 distinct RNA-editing events leading to 24 protein isoforms, is a notable example of this process. These 5HT(2C) isoforms display differences in constitutive activity, agonist/inverse agonist potencies, and efficacies. To elucidate the molecular mechanisms responsible for these effects of RNA editing, we present four active-state 5HT(2C)-transducer-coupled structures of three representative isoforms (INI, VGV, and VSV) with the selective drug lorcaserin (Belviq) and the classic psychedelic psilocin. We also provide a comprehensive analysis of agonist activation and constitutive activity across all 24 protein isoforms. Collectively, these findings reveal a unique hydrogen-bonding network located on intracellular loop 2 that is subject to RNA editing, which differentially affects GPCR constitutive and agonist signaling activities. | RNA editing is a process by which post-transcriptional changes of mRNA nucleotides alter protein function through modification of the amino acid content. The 5HT(2C) serotonin receptor, which undergoes 32 distinct RNA-editing events leading to 24 protein isoforms, is a notable example of this process. These 5HT(2C) isoforms display differences in constitutive activity, agonist/inverse agonist potencies, and efficacies. To elucidate the molecular mechanisms responsible for these effects of RNA editing, we present four active-state 5HT(2C)-transducer-coupled structures of three representative isoforms (INI, VGV, and VSV) with the selective drug lorcaserin (Belviq) and the classic psychedelic psilocin. We also provide a comprehensive analysis of agonist activation and constitutive activity across all 24 protein isoforms. Collectively, these findings reveal a unique hydrogen-bonding network located on intracellular loop 2 that is subject to RNA editing, which differentially affects GPCR constitutive and agonist signaling activities. | ||
- | + | , PMID:35977511<ref>PMID:35977511</ref> | |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
Current revision
Cryo-EM structure of the 5HT2C receptor (INI isoform) bound to lorcaserin
|