1jss
From Proteopedia
(Difference between revisions)
Line 14: | Line 14: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/js/1jss_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/js/1jss_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jss ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jss ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The x-ray structure of the mouse cholesterol-regulated START protein 4 (StarD4) has been determined at 2.2-A resolution, revealing a compact alpha/beta structure related to the START domain present in the cytoplasmic C-terminal portion of human MLN64. The volume of the putative lipid-binding tunnel was estimated at 847 A(3), which is consistent with the binding of one cholesterol-size lipid molecule. Comparison of the tunnel-lining residues in StarD4 and MLN64-START permitted identification of possible lipid specificity determinants in both molecular tunnels. Homology modeling of related proteins, and comparison of the StarD4 and MLN64-START structures, showed that StarD4 is a member of a large START domain superfamily characterized by the helix-grip fold. Additional mechanistic and evolutionary studies should be facilitated by the availability of a second START domain structure from a distant relative of MLN64. | ||
+ | |||
+ | Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain.,Romanowski MJ, Soccio RE, Breslow JL, Burley SK Proc Natl Acad Sci U S A. 2002 May 14;99(10):6949-54. PMID:12011453<ref>PMID:12011453</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1jss" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4).
|