1q9j
From Proteopedia
(Difference between revisions)
Line 14: | Line 14: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q9/1q9j_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q9/1q9j_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1q9j ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1q9j ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Polyketide-associated protein A5 (PapA5) is an acyltransferase that is involved in production of phthiocerol and phthiodiolone dimycocerosate esters, a class of virulence-enhancing lipids produced by Mycobacterium tuberculosis. Structural analysis of PapA5 at 2.75-A resolution reveals a two-domain structure that shares unexpected similarity to structures of chloramphenicol acetyltransferase, dihydrolipoyl transacetylase, carnitine acetyltransferase, and VibH, a non-ribosomal peptide synthesis condensation enzyme. The PapA5 active site includes conserved histidine and aspartic acid residues that are critical to PapA5 acyltransferase activity. PapA5 catalyzes acyl transfer reactions on model substrates that contain long aliphatic carbon chains, and two hydrophobic channels were observed linking the PapA5 surface to the active site with properties consistent with these biochemical activities and substrate preferences. An additional alpha helix not observed in other acyltransferase structures blocks the putative entrance into the PapA5 active site, indicating that conformational changes may be associated with PapA5 activity. PapA5 represents the first structure solved for a protein involved in polyketide synthesis in Mycobacteria. | ||
+ | |||
+ | Crystal structure of PapA5, a phthiocerol dimycocerosyl transferase from Mycobacterium tuberculosis.,Buglino J, Onwueme KC, Ferreras JA, Quadri LE, Lima CD J Biol Chem. 2004 Jul 16;279(29):30634-42. Epub 2004 May 3. PMID:15123643<ref>PMID:15123643</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1q9j" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
Structure of polyketide synthase associated protein 5 from Mycobacterium tuberculosis
|