|
|
Line 3: |
Line 3: |
| <SX load='6fq5' size='340' side='right' viewer='molstar' caption='[[6fq5]], [[Resolution|resolution]] 3.80Å' scene=''> | | <SX load='6fq5' size='340' side='right' viewer='molstar' caption='[[6fq5]], [[Resolution|resolution]] 3.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6fq5]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6FQ5 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6FQ5 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6fq5]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6FQ5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6FQ5 FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">hist1h2aj, LOC494591 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), XELAEV_18032686mg ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.8Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6fq5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6fq5 OCA], [http://pdbe.org/6fq5 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6fq5 RCSB], [http://www.ebi.ac.uk/pdbsum/6fq5 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6fq5 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6fq5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6fq5 OCA], [https://pdbe.org/6fq5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6fq5 RCSB], [https://www.ebi.ac.uk/pdbsum/6fq5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6fq5 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/H4_XENLA H4_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | + | [https://www.uniprot.org/uniprot/H32_XENLA H32_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 25: |
Line 25: |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: African clawed frog]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Bilokapic, S]] | + | [[Category: Synthetic construct]] |
- | [[Category: Halic, M]] | + | [[Category: Xenopus laevis]] |
- | [[Category: Chromatin remodeling]] | + | [[Category: Bilokapic S]] |
- | [[Category: Cryo em]] | + | [[Category: Halic M]] |
- | [[Category: Gene regulation]]
| + | |
- | [[Category: Nucleosome]]
| + | |
- | [[Category: Nucleosome sliding]]
| + | |
| Structural highlights
Function
H32_XENLA Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Publication Abstract from PubMed
Nucleosomes, the basic unit of chromatin, package and regulate expression of eukaryotic genomes. Nucleosomes are highly dynamic and are remodeled with the help of ATP-dependent remodeling factors. Yet, the mechanism of DNA translocation around the histone octamer is poorly understood. In this study, we present several nucleosome structures showing histone proteins and DNA in different organizational states. We observe that the histone octamer undergoes conformational changes that distort the overall nucleosome structure. As such, rearrangements in the histone core alpha-helices and DNA induce strain that distorts and moves DNA at SHL 2. Distortion of the nucleosome structure detaches histone alpha-helices from the DNA, leading to their rearrangement and DNA translocation. Biochemical assays show that cross-linked histone octamers are immobilized on DNA, indicating that structural changes in the octamer move DNA. This intrinsic plasticity of the nucleosome is exploited by chromatin remodelers and might be used by other chromatin machineries.
Structural rearrangements of the histone octamer translocate DNA.,Bilokapic S, Strauss M, Halic M Nat Commun. 2018 Apr 6;9(1):1330. doi: 10.1038/s41467-018-03677-z. PMID:29626188[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Bilokapic S, Strauss M, Halic M. Structural rearrangements of the histone octamer translocate DNA. Nat Commun. 2018 Apr 6;9(1):1330. doi: 10.1038/s41467-018-03677-z. PMID:29626188 doi:http://dx.doi.org/10.1038/s41467-018-03677-z
|