9kxh

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:21, 27 August 2025) (edit) (undo)
 
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 9kxh is ON HOLD until 2026-12-06
+
==Crystal structure of the PIN1 and fragment 42 complex==
 +
<StructureSection load='9kxh' size='340' side='right'caption='[[9kxh]], [[Resolution|resolution]] 1.68&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[9kxh]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=9KXH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=9KXH FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.68&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=A1EHO:2,6-bis(fluoranyl)benzamide'>A1EHO</scene>, <scene name='pdbligand=PE8:3,6,9,12,15,18,21-HEPTAOXATRICOSANE-1,23-DIOL'>PE8</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=9kxh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=9kxh OCA], [https://pdbe.org/9kxh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=9kxh RCSB], [https://www.ebi.ac.uk/pdbsum/9kxh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=9kxh ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/PIN1_HUMAN PIN1_HUMAN] Essential PPIase that regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Displays a preference for an acidic residue N-terminal to the isomerized proline bond. Catalyzes pSer/Thr-Pro cis/trans isomerizations. Down-regulates kinase activity of BTK. Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation.<ref>PMID:15664191</ref> <ref>PMID:16644721</ref> <ref>PMID:21497122</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that specifically recognizes and catalyzes the cis-trans isomerization of pSer/Thr-Pro motifs. It plays a pivotal role in cell cycle regulation, signal transduction, and tumorigenesis. Due to its overexpression in many cancer types, Pin1 has emerged as a promising target for the development of anticancer drugs. However, the relatively shallow and flat surface of Pin1 presents significant challenges for traditional small-molecule inhibitor design. To overcome these limitations, we employed an X-ray crystallography-based fragment screening strategy and identified approximately 50 Pin1-fragment complex structures from a curated fragment library. Systematic structural analysis revealed several druggable binding hotspots, including the well-characterized catalytic center (Site 1) and a neighboring region near the catalytic residue Cys113 (Site 2). Both sites supported stable binding with diverse fragment scaffolds. Notably, several fragments displayed cooperative binding across multiple sites, highlighting their potential as scaffolds for multifunctional inhibitor design. Additionally, a subset of fragments showed reactivity toward Cys113, and their covalent binding modes were confirmed through crystallographic and mass spectrometric analyses. Enzymatic inhibition assays further demonstrated that several fragments effectively suppressed Pin1 activity in solution, validating their potential as lead compounds. In summary, this study systematically mapped functional binding pockets on Pin1 through a structure-driven fragment screening approach, expanded its druggable landscape, and identified key structural features and fragment chemotypes to guide the development of selective, well-defined Pin1 inhibitors.
-
Authors: Xiao, Q.J., Wu, T.T., Shu, H.L., Qin, W.M.
+
Uncovering druggable hotspots on Pin1 via X-ray crystallographic fragment screening.,Xiao Q, Tang J, Shu H, Wu T, Zhang H, Wang W, Wang L, Qin W Eur J Med Chem. 2025 Aug 7;299:118048. doi: 10.1016/j.ejmech.2025.118048. PMID:40803165<ref>PMID:40803165</ref>
-
Description: Crystal structure of the PIN1 and fragment 42 complex
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Shu, H.L]]
+
<div class="pdbe-citations 9kxh" style="background-color:#fffaf0;"></div>
-
[[Category: Qin, W.M]]
+
== References ==
-
[[Category: Wu, T.T]]
+
<references/>
-
[[Category: Xiao, Q.J]]
+
__TOC__
 +
</StructureSection>
 +
[[Category: Homo sapiens]]
 +
[[Category: Large Structures]]
 +
[[Category: Qin WM]]
 +
[[Category: Shu HL]]
 +
[[Category: Wu TT]]
 +
[[Category: Xiao QJ]]

Current revision

Crystal structure of the PIN1 and fragment 42 complex

PDB ID 9kxh

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools