7qv7

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:33, 1 October 2025) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7qv7]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermoanaerobacter_kivui Thermoanaerobacter kivui]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7QV7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7QV7 FirstGlance]. <br>
<table><tr><td colspan='2'>[[7qv7]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermoanaerobacter_kivui Thermoanaerobacter kivui]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7QV7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7QV7 FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=402:DICARBONYL[BIS(CYANIDE-KAPPAC)]-MU-(IMINODIMETHANETHIOLATATO-1KAPPAS 2KAPPAS)-MU-(OXOMETHYLIDENE)DIIRON(2+)'>402</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.4&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=402:DICARBONYL[BIS(CYANIDE-KAPPAC)]-MU-(IMINODIMETHANETHIOLATATO-1KAPPAS 2KAPPAS)-MU-(OXOMETHYLIDENE)DIIRON(2+)'>402</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7qv7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7qv7 OCA], [https://pdbe.org/7qv7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7qv7 RCSB], [https://www.ebi.ac.uk/pdbsum/7qv7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7qv7 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7qv7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7qv7 OCA], [https://pdbe.org/7qv7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7qv7 RCSB], [https://www.ebi.ac.uk/pdbsum/7qv7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7qv7 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/A0A097ATJ9_THEKI A0A097ATJ9_THEKI]]
+
[https://www.uniprot.org/uniprot/A0A097ATJ9_THEKI A0A097ATJ9_THEKI]
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
Filamentous enzymes have been found in all domains of life, but the advantage of filamentation is often elusive(1). Some anaerobic, autotrophic bacteria have an unusual filamentous enzyme for CO2 fixation-hydrogen-dependent CO2 reductase (HDCR)(2,3)-which directly converts H2 and CO2 into formic acid. HDCR reduces CO2 with a higher activity than any other known biological or chemical catalyst(4,5), and it has therefore gained considerable interest in two areas of global relevance: hydrogen storage and combating climate change by capturing atmospheric CO2. However, the mechanistic basis of the high catalytic turnover rate of HDCR has remained unknown. Here we use cryo-electron microscopy to reveal the structure of a short HDCR filament from the acetogenic bacterium Thermoanaerobacter kivui. The minimum repeating unit is a hexamer that consists of a formate dehydrogenase (FdhF) and two hydrogenases (HydA2) bound around a central core of hydrogenase Fe-S subunits, one HycB3 and two HycB4. These small bacterial polyferredoxin-like proteins oligomerize through their C-terminal helices to form the backbone of the filament. By combining structure-directed mutagenesis with enzymatic analysis, we show that filamentation and rapid electron transfer through the filament enhance the activity of HDCR. To investigate the structure of HDCR in situ, we imaged T. kivui cells with cryo-electron tomography and found that HDCR filaments bundle into large ring-shaped superstructures attached to the plasma membrane. This supramolecular organization may further enhance the stability and connectivity of HDCR to form a specialized metabolic subcompartment within the cell.
+
-
 
+
-
Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation.,Dietrich HM, Righetto RD, Kumar A, Wietrzynski W, Trischler R, Schuller SK, Wagner J, Schwarz FM, Engel BD, Muller V, Schuller JM Nature. 2022 Jul;607(7920):823-830. doi: 10.1038/s41586-022-04971-z. Epub 2022, Jul 20. PMID:35859174<ref>PMID:35859174</ref>
+
-
 
+
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 7qv7" style="background-color:#fffaf0;"></div>
+
-
== References ==
+
-
<references/>
+
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Cryo-EM structure of Hydrogen-dependent CO2 reductase.

PDB ID 7qv7

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools