TRPC1 TRPC4 8WPL BI3323 Aug2025
From Proteopedia
(Difference between revisions)
(changed 3D picture codes) |
(new codes for the images, manual) |
||
| Line 25: | Line 25: | ||
=== Figure 1: Asymmetric Tetramer Assembly (1:3 Stoichiometry) === | === Figure 1: Asymmetric Tetramer Assembly (1:3 Stoichiometry) === | ||
The TRPC1/TRPC4 channel structure (PDB 8WPL) displays an overall asymmetric tetrameric assembly, consisting of one TRPC1 subunit (Chain D) and three TRPC4 subunits (Chains A, B, C). This configuration breaks the expected C4 symmetry. | The TRPC1/TRPC4 channel structure (PDB 8WPL) displays an overall asymmetric tetrameric assembly, consisting of one TRPC1 subunit (Chain D) and three TRPC4 subunits (Chains A, B, C). This configuration breaks the expected C4 symmetry. | ||
| - | <StructureSection load='8WPL' size='340' side='right' caption='Figure 1: Overall Asymmetric Assembly of TRPC1/TRPC4 (1:3)' Commands='select all; color chain; zoom 100; orient | + | <StructureSection load='8WPL' size='340' side='right' caption='Figure 1: Overall Asymmetric Assembly of TRPC1/TRPC4 (1:3)' Commands='select all; cartoon; color chain; zoom 100; orient 0 0 0 1 0;'> |
</StructureSection> | </StructureSection> | ||
| - | |||
=== Figure 2: The K639 Calcium Gate === | === Figure 2: The K639 Calcium Gate === | ||
Calcium permeability is dictated by the **K639 residue** on the TRPC1 subunit. This residue protrudes into the central cavity, where its positive charge repels positively charged calcium ions, providing the mechanism for reduced calcium influx. | Calcium permeability is dictated by the **K639 residue** on the TRPC1 subunit. This residue protrudes into the central cavity, where its positive charge repels positively charged calcium ions, providing the mechanism for reduced calcium influx. | ||
| - | <StructureSection load='8WPL' size='340' side='right' caption='Figure 2: K639 residue (red) controlling the central cavity' Commands='select all | + | <StructureSection load='8WPL' size='340' side='right' caption='Figure 2: K639 residue (red) controlling the central cavity' Commands='select all; cartoon; color cartoon chain; select :639.D; wireframe off; spacefill 0.6; color red, :639.D; zoom 150;'> |
</StructureSection> | </StructureSection> | ||
| - | |||
=== Figure 3: The L601 Selectivity Filter === | === Figure 3: The L601 Selectivity Filter === | ||
The channel's selectivity for monovalent ions is determined by the **L601 residue** on TRPC1. This residue causes a physical constriction at the selectivity filter, narrowing the pore radius and affecting ion preference. | The channel's selectivity for monovalent ions is determined by the **L601 residue** on TRPC1. This residue causes a physical constriction at the selectivity filter, narrowing the pore radius and affecting ion preference. | ||
| - | <StructureSection load='8WPL' size='340' side='right' caption='Figure 3: L601 residue (magenta) constricting the selectivity filter' Commands='select all | + | <StructureSection load='8WPL' size='340' side='right' caption='Figure 3: L601 residue (magenta) constricting the selectivity filter' Commands='select all; cartoon; color cartoon chain; select :601.D; wireframe 0.2; color magenta, :601.D; zoom 200; orient 0 0 0 1 0;'> |
</StructureSection> | </StructureSection> | ||
| - | |||
</StructureSection> | </StructureSection> | ||
== References == | == References == | ||
<references/> | <references/> | ||
Revision as of 14:18, 30 November 2025
Contents |
Overview of the TRPC1/TRPC4 Channel
| |||||||||||
Figure 2: The K639 Calcium Gate
Calcium permeability is dictated by the **K639 residue** on the TRPC1 subunit. This residue protrudes into the central cavity, where its positive charge repels positively charged calcium ions, providing the mechanism for reduced calcium influx.
| |||||||||||
Figure 3: The L601 Selectivity Filter
The channel's selectivity for monovalent ions is determined by the **L601 residue** on TRPC1. This residue causes a physical constriction at the selectivity filter, narrowing the pore radius and affecting ion preference.
| |||||||||||
</StructureSection>
References
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
- ↑ Pani, B., Cornatzer, E. et al. (2006). Up-Regulation of Transient Receptor Potential Canonical 1 (TRPC1) following Sarco(endo)plasmic Reticulum Ca²⁺ ATPase 2 Gene Silencing Promotes Cell Survival: A Potential Role for TRPC1 in Darier's Disease. Molecular Biology of the Cell, 17(10):4446–4458.
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
- ↑ Jeon, J., Moore, T. I., Sob, I. et al. (2025). TRPC4 regulates limbic behavior and neuronal development by stabilizing dendrite branches through actomyosin-driven integrin activation. PNAS, 122(33):e2511037ca122.
- ↑ Pani, B., Cornatzer, E. et al. (2006). Up-Regulation of Transient Receptor Potential Canonical 1 (TRPC1) following Sarco(endo)plasmic Reticulum Ca²⁺ ATPase 2 Gene Silencing Promotes Cell Survival: A Potential Role for TRPC1 in Darier's Disease. Molecular Biology of the Cell, 17(10):4446–4458.
- ↑ Jeon, J., Moore, T. I., Sob, I. et al. (2025). TRPC4 regulates limbic behavior and neuronal development by stabilizing dendrite branches through actomyosin-driven integrin activation. PNAS, 122(33):e2511037122.
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
- ↑ Won, J., Kim, J., Kim, J. et al. (2025). Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nature Structural & Molecular Biology, 32(2):326–338. DOI: 10.1038/s41594-024-01408-1
