2v22
From Proteopedia
Line 1: | Line 1: | ||
[[Image:2v22.jpg|left|200px]] | [[Image:2v22.jpg|left|200px]] | ||
- | + | <!-- | |
- | + | The line below this paragraph, containing "STRUCTURE_2v22", creates the "Structure Box" on the page. | |
- | + | You may change the PDB parameter (which sets the PDB file loaded into the applet) | |
- | + | or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | |
- | + | or leave the SCENE parameter empty for the default display. | |
- | | | + | --> |
- | | | + | {{STRUCTURE_2v22| PDB=2v22 | SCENE= }} |
- | + | ||
- | + | ||
- | }} | + | |
'''REPLACE: A STRATEGY FOR ITERATIVE DESIGN OF CYCLIN BINDING GROOVE INHIBITORS''' | '''REPLACE: A STRATEGY FOR ITERATIVE DESIGN OF CYCLIN BINDING GROOVE INHIBITORS''' | ||
Line 34: | Line 31: | ||
[[Category: Mcinnes, C.]] | [[Category: Mcinnes, C.]] | ||
[[Category: Plater, A.]] | [[Category: Plater, A.]] | ||
- | [[Category: | + | [[Category: Active]] |
- | [[Category: | + | [[Category: Atp-binding]] |
- | [[Category: | + | [[Category: Cdk2]] |
- | [[Category: | + | [[Category: Cell cycle]] |
- | [[Category: | + | [[Category: Cell division]] |
- | [[Category: | + | [[Category: Cyclin]] |
- | [[Category: | + | [[Category: Cyclin groove]] |
- | [[Category: | + | [[Category: Inhibition]] |
- | [[Category: | + | [[Category: Kinase]] |
- | [[Category: | + | [[Category: Mitosis]] |
- | [[Category: | + | [[Category: Nonpeptide]] |
- | [[Category: | + | [[Category: Nucleotide-binding]] |
- | [[Category: | + | [[Category: Phosphorylation]] |
- | [[Category: | + | [[Category: Polymorphism]] |
- | [[Category: | + | [[Category: Serine/threonine-protein kinase]] |
- | [[Category: | + | [[Category: Transferase]] |
- | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 18:04:24 2008'' | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + |
Revision as of 15:04, 4 May 2008
REPLACE: A STRATEGY FOR ITERATIVE DESIGN OF CYCLIN BINDING GROOVE INHIBITORS
Overview
We describe a drug-design strategy termed REPLACE (REplacement with Partial Ligand Alternatives through Computational Enrichment) in which nonpeptidic surrogates for specific determinants of known peptide ligands are identified in silico by using a core peptide-bound protein structure as a design anchor. In the REPLACE application example, we present the effective replacement of two critical binding motifs in a lead protein-protein interaction inhibitor pentapeptide with more druglike phenyltriazole and diphenyl ether groups. These were identified through docking of fragment libraries into the volume of the cyclin-binding groove of CDK2/cyclin A vacated through truncation of the inhibitor peptide-binding determinants. Proof of concept for this strategy was obtained through the generation of potent peptide-small-molecule hybrids and by the confirmation of inhibitor-binding modes in X-ray crystal structures. This method therefore allows nonpeptide fragments to be identified without the requirement for a high-sensitivity binding assay and should be generally applicable in replacing amino acids as individual residues or groups in peptide inhibitors to generate pharmaceutically acceptable lead molecules.
About this Structure
2V22 is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.
Reference
REPLACE: a strategy for iterative design of cyclin-binding groove inhibitors., Andrews MJ, Kontopidis G, McInnes C, Plater A, Innes L, Cowan A, Jewsbury P, Fischer PM, Chembiochem. 2006 Dec;7(12):1909-15. PMID:17051658 Page seeded by OCA on Sun May 4 18:04:24 2008
Categories: Homo sapiens | Non-specific serine/threonine protein kinase | Protein complex | Andrews, M J. | Cowan, A. | Fischer, P M. | Innes, L. | Jewsbury, P. | Kontopidis, G. | Mcinnes, C. | Plater, A. | Active | Atp-binding | Cdk2 | Cell cycle | Cell division | Cyclin | Cyclin groove | Inhibition | Kinase | Mitosis | Nonpeptide | Nucleotide-binding | Phosphorylation | Polymorphism | Serine/threonine-protein kinase | Transferase