From Proteopedia
(Difference between revisions)
proteopedia linkproteopedia link
|
|
Line 1: |
Line 1: |
- | [[Image:1ff3.jpg|left|200px]] | + | {{Seed}} |
| + | [[Image:1ff3.png|left|200px]] |
| | | |
| <!-- | | <!-- |
Line 9: |
Line 10: |
| {{STRUCTURE_1ff3| PDB=1ff3 | SCENE= }} | | {{STRUCTURE_1ff3| PDB=1ff3 | SCENE= }} |
| | | |
- | '''STRUCTURE OF THE PEPTIDE METHIONINE SULFOXIDE REDUCTASE FROM ESCHERICHIA COLI'''
| + | ===STRUCTURE OF THE PEPTIDE METHIONINE SULFOXIDE REDUCTASE FROM ESCHERICHIA COLI=== |
| | | |
| | | |
- | ==Overview==
| + | <!-- |
- | BACKGROUND: Peptide methionine sulphoxide reductases catalyze the reduction of oxidized methionine residues in proteins. They are implicated in the defense of organisms against oxidative stress and in the regulation of processes involving peptide methionine oxidation/reduction. These enzymes are found in numerous organisms, from bacteria to mammals and plants. Their primary structure shows no significant similarity to any other known protein. RESULTS: The X-ray structure of the peptide methionine sulphoxide reductase from Escherichia coli was determined at 3 A resolution by the multiple wavelength anomalous dispersion method for the selenomethionine-substituted enzyme, and it was refined to 1.9 A resolution for the native enzyme. The 23 kDa protein is folded into an alpha/beta roll and contains a large proportion of coils. Among the three cysteine residues involved in the catalytic mechanism, Cys-51 is positioned at the N terminus of an alpha helix, in a solvent-exposed area composed of highly conserved amino acids. The two others, Cys-198 and Cys-206, are located in the C-terminal coil. CONCLUSIONS: Sequence alignments show that the overall fold of the peptide methionine sulphoxide reductase from E. coli is likely to be conserved in many species. The characteristics observed in the Cys-51 environment are in agreement with the expected accessibility of the active site of an enzyme that reduces methionine sulphoxides in various proteins. Cys-51 could be activated by the influence of an alpha helix dipole. The involvement of the two other cysteine residues in the catalytic mechanism requires a movement of the C-terminal coil. Several conserved amino acids and water molecules are discussed as potential participants in the reaction.
| + | The line below this paragraph, {{ABSTRACT_PUBMED_11080639}}, adds the Publication Abstract to the page |
| + | (as it appears on PubMed at http://www.pubmed.gov), where 11080639 is the PubMed ID number. |
| + | --> |
| + | {{ABSTRACT_PUBMED_11080639}} |
| | | |
| ==About this Structure== | | ==About this Structure== |
Line 32: |
Line 36: |
| [[Category: Peptide methionine sulfoxide reductase]] | | [[Category: Peptide methionine sulfoxide reductase]] |
| [[Category: Pmsr]] | | [[Category: Pmsr]] |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 16:15:04 2008'' | + | |
| + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Jul 1 03:09:03 2008'' |
Revision as of 00:09, 1 July 2008
Template:STRUCTURE 1ff3
STRUCTURE OF THE PEPTIDE METHIONINE SULFOXIDE REDUCTASE FROM ESCHERICHIA COLI
Template:ABSTRACT PUBMED 11080639
About this Structure
1FF3 is a Single protein structure of sequence from Escherichia coli. Full crystallographic information is available from OCA.
Reference
Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 A resolution., Tete-Favier F, Cobessi D, Boschi-Muller S, Azza S, Branlant G, Aubry A, Structure. 2000 Nov 15;8(11):1167-78. PMID:11080639
Page seeded by OCA on Tue Jul 1 03:09:03 2008