Goodsell Sandbox

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
Ribonuclease A Active Site
Ribonuclease A Active Site
-
Ribonuclease A cleaves RNA strands by catalyzing a transphosphorylation reaction where the 2'-OH of the ribose sugar attacks the neighboring phosphate, releasing the ribose on the the other side of the phosphate. This structure shows ribonuclease A (in blue) bound to short DNA strand composed of four thymidines (in pink). Ribonuclease binds tightly to DNA, but since DNA is missing the 2'-OH, ribonuclease does not cleave it. <scene name='Goodsell_Sandbox/Ribonuclease_catalytic_site/1'>Three amino acids</scene> are shown that are important for catalysis. The 3' carbon on the DNA is shown in red--it is the site where the 2'-OH is connected in RNA. The two histidines perform the proton transfers that are needed in the reaction, and the lysine stabilizes the intermediate that is formed as the 2'-OH attacks the phosphate. Ribonuclease cleaves cytidine and uridine best--the reason for this may be seen in a <scene name='Goodsell_Sandbox/Ribonuclease_recognition/1'>spacefilling representation</scene>. Notice that the small pyrimidine base is surrounded by protein atoms. A larger purine base would not fit well in this space.
+
Ribonuclease A cleaves RNA strands by catalyzing a transphosphorylation reaction where the 2'-OH of the ribose sugar attacks the neighboring phosphate, releasing the ribose on the the other side of the phosphate. This structure shows ribonuclease A (in blue) bound to short DNA strand composed of four thymidines (in pink). Ribonuclease binds tightly to DNA, but since DNA is missing the 2'-OH, ribonuclease does not cleave it. <scene name='Goodsell_Sandbox/Ribonuclease_catalytic_site/1'>Three amino acids</scene> are shown that are important for catalysis. The 3' carbon on the DNA is shown in red--it is the site where the 2'-OH is connected in RNA. The two histidines perform the proton transfers that are needed in the reaction, and the lysine stabilizes the intermediate that is formed as the 2'-OH attacks the phosphate. Ribonuclease cleaves RNA strands best next to cytidine and uridine nucleotides--the reason for this may be seen in a <scene name='Goodsell_Sandbox/Ribonuclease_recognition/1'>spacefilling representation</scene>. Notice that the small pyrimidine base is surrounded by protein atoms. A larger purine base would not fit well in this space.

Revision as of 17:26, 19 August 2008

Template:STRUCTURE 1rta

Ribonuclease A Active Site

Ribonuclease A cleaves RNA strands by catalyzing a transphosphorylation reaction where the 2'-OH of the ribose sugar attacks the neighboring phosphate, releasing the ribose on the the other side of the phosphate. This structure shows ribonuclease A (in blue) bound to short DNA strand composed of four thymidines (in pink). Ribonuclease binds tightly to DNA, but since DNA is missing the 2'-OH, ribonuclease does not cleave it. are shown that are important for catalysis. The 3' carbon on the DNA is shown in red--it is the site where the 2'-OH is connected in RNA. The two histidines perform the proton transfers that are needed in the reaction, and the lysine stabilizes the intermediate that is formed as the 2'-OH attacks the phosphate. Ribonuclease cleaves RNA strands best next to cytidine and uridine nucleotides--the reason for this may be seen in a . Notice that the small pyrimidine base is surrounded by protein atoms. A larger purine base would not fit well in this space.

Proteopedia Page Contributors and Editors (what is this?)

David S. Goodsell

Personal tools