We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

Sandbox108

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(OUTLINE)
(OUTLINE)
Line 11: Line 11:
-
Tertiary structure of protein is characterized by the “global” folding of a polypeptide chain [http://www.stanford.edu/group/pandegroup/folding/education/prstruc.html] and consist of two domains. Hydrophobic interaction is a major driving force determining the tertiary structure of the proteins. [http://www.stanford.edu/group/pandegroup/folding/education/prstruc.html] The reason why hydrophobic interaction is important is because of relationship with the hydrogen bonding. The peptide backbone is hydrophilic, but in the middle of proteins is mostly in a hydrophobic circumstance. So, in order to reduce the hydrophilicity, to maximize the hydrogen bonding, the α-helix <insert wiki showing α-helix> and the β-sheet <insert wiki showing the β-sheet> can break down the C=O and N-H groups in the peptide bonds so that the hydrogen bonds are maximum. [http://www.massey.ac.nz/~wwbioch/Prot/thirds/framset.htm] Also, all polar and hydrophilic side chains interact with H-bonds. Hydrogen bonding <insert wiki showing the H.B> is crucial in stabilizing the tertiary structure. [http://webhost.bridgew.edu/fgorga/proteins/proteins.htm] On the other hand, disulfide bonds <insert wiki showing the disulfide bonds of cysteine> between cysteine residues stabilize the tertiary structure. [http://webhost.bridgew.edu/fgorga/proteins/proteins.htm]
+
Tertiary structure of protein is characterized by the “global” folding of a polypeptide chain [http://www.stanford.edu/group/pandegroup/folding/education/prstruc.html] and has two domains in refined atomic model of glutamine synthetase from Salmonella typhimurium. Hydrophobic interaction is a major driving force determining the most tertiary structure of the proteins. [http://www.stanford.edu/group/pandegroup/folding/education/prstruc.html] Hydrogen bonding <insert wiki showing the H.B> is crucial in stabilizing the tertiary structure as well. [http://webhost.bridgew.edu/fgorga/proteins/proteins.htm] Also, disulfide bonds <insert wiki showing the disulfide bonds of cysteine> between cysteine residues stabilize the tertiary structure. [http://webhost.bridgew.edu/fgorga/proteins/proteins.htm]
 +
Glutamine synthetase from Salmonella has twenty three helix-helix interactions. [http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2gls&template=protein.html&o=HELIX_INTERACTIONS&l=1&s=1&c=7&chain=A] Hydrophobic/polar <hydrophobic/polar wiki> (put color) and hydrophilic <hydrophilic wiki>(put color) region of glutamine are combined together to fold proteins.
-
Glutamine is within uncharged polar <insert wiki showing the uncharged polar groups>. Usually, uncharged polar groups are classified as hydrophilic <insert wiki showing the hydrophilic> that is found on the outside of proteins. Also, amino acids with the character of acidic or basic side chains are polar, showing on the outside of molecules <insert wiki showing the polar>. For glutamine, its side chain is uncharged and formed by replacing the hydroxyl of glutamic acid with an amine functional group. [http://en.wikipedia.org/wiki/Glutamine] In the other hand, glutamine has no side chain on non-polar group, however the side chain on non-polar groups of the proteins usually tends to be hydrophobic <insert wiki showing the hydrophobic of cysteine> and to cluster together on the inside.[http://www.bmb.uga.edu/wampler/tutorial/prot3.html]
+
 
 +
 
 +
is within uncharged polar <insert wiki showing the uncharged polar groups>. Usually, uncharged polar groups are classified as hydrophilic <insert wiki showing the hydrophilic> that is found on the outside of proteins. Also, amino acids with the character of acidic or basic side chains are polar, showing on the outside of molecules <insert wiki showing the polar>. For glutamine, its side chain is uncharged and formed by replacing the hydroxyl of glutamic acid with an amine functional group. [http://en.wikipedia.org/wiki/Glutamine] In the other hand, glutamine has no side chain on non-polar group, however the side chain on non-polar groups of the proteins usually tends to be hydrophobic <insert wiki showing the hydrophobic of cysteine> and to cluster together on the inside.[http://www.bmb.uga.edu/wampler/tutorial/prot3.html]

Revision as of 22:23, 16 December 2008

Glutamine synthetase assignment by UMBC undergraduate students

PDB ID 2qc8

Drag the structure with the mouse to rotate
2qc8, resolution 2.60Å ()
Ligands: , , ,
Gene: GLUL, GLNS (Homo sapiens)
Activity: Glutamate--ammonia ligase, with EC number 6.3.1.2
Related: 2ojw
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


OUTLINE

Tertiary Structure


Tertiary structure of protein is characterized by the “global” folding of a polypeptide chain [1] and has two domains in refined atomic model of glutamine synthetase from Salmonella typhimurium. Hydrophobic interaction is a major driving force determining the most tertiary structure of the proteins. [2] Hydrogen bonding <insert wiki showing the H.B> is crucial in stabilizing the tertiary structure as well. [3] Also, disulfide bonds <insert wiki showing the disulfide bonds of cysteine> between cysteine residues stabilize the tertiary structure. [4]

Glutamine synthetase from Salmonella has twenty three helix-helix interactions. [5] Hydrophobic/polar <hydrophobic/polar wiki> (put color) and hydrophilic <hydrophilic wiki>(put color) region of glutamine are combined together to fold proteins.


is within uncharged polar <insert wiki showing the uncharged polar groups>. Usually, uncharged polar groups are classified as hydrophilic <insert wiki showing the hydrophilic> that is found on the outside of proteins. Also, amino acids with the character of acidic or basic side chains are polar, showing on the outside of molecules <insert wiki showing the polar>. For glutamine, its side chain is uncharged and formed by replacing the hydroxyl of glutamic acid with an amine functional group. [6] In the other hand, glutamine has no side chain on non-polar group, however the side chain on non-polar groups of the proteins usually tends to be hydrophobic <insert wiki showing the hydrophobic of cysteine> and to cluster together on the inside.[7]

Personal tools