DNA

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
+
<!-- Adithya Sagar-->
-
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" dir="ltr">
+
<applet load='B-DNA.pdb' size='330'frame='true' align='right' caption='B-DNA' scene='User:Adithya_Sagar/Workbench_newDNA/B-dna/22' />
-
<head>
+
'''Deoxyribonucleic acid''' or '''DNA''' is a molecule which is the carrier of genetic information in nearly all the living organisms. It contains the biological instructions for the development, survival and reproduction of organisms.
-
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+
DNA is found in the nucleus of a cell where it is packaged into a compact form called chromosome with the help of several proteins known as histones. It is also found in cell structures called mitochondria. The genetic information is stored as a sequence of nucleotides in special regions known as genes which are used to make proteins. The expression of genetic information into proteins is a two stage process wherein the sequence of nucleotides in DNA is converted to a molecule called Ribonucleic acid or RNA by a process called transcription which then is used to make proteins by another process called translation. The human genome contains nearly 3 billion bases with 20,000 genes on 23 chromosomes. <ref name='gene'>http://www.genome.gov/25520880 </ref>
-
<meta name="robots" content="noindex,nofollow" />
+
-
<link rel="shortcut icon" href="/favicon.ico" />
+
DNA was first discovered by a German Biochemist Frederich Miescher in the year 1869.<ref>PMID: 17901982</ref> Based on the works on Erwin Chargaff, James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin the structure of DNA was discovered in the year 1953. The structure of DNA is called a double helix which consists two complementary strands of polynucleotides that run in opposite directions and are held together by hydrogen bonds between them. This structure helps the DNA in replicating itself during cell division and also for a single strand to serve as template during transcription. <ref name='gene'>http://www.genome.gov/25520880 </ref>
-
<link rel="search" type="application/opensearchdescription+xml" href="/wiki/opensearch_desc.php" title="Proteopedia (English)" />
+
-
<link title="Creative Commons" type="application/rdf+xml" href="/wiki/index.php?title=User:Adithya_Sagar/Workbench_newDNA&action=creativecommons" rel="meta" />
+
-
<link rel="copyright" href="http://www.gnu.org/copyleft/fdl.html" />
+
-
<title>Error</title>
+
-
<style type="text/css" media="screen,projection">/*<![CDATA[*/ @import "/wiki/skins/monobook/main.css?97"; /*]]>*/</style>
+
-
<link rel="stylesheet" type="text/css" media="print" href="/wiki/skins/common/commonPrint.css?97" />
+
-
<link rel="stylesheet" type="text/css" media="handheld" href="/wiki/skins/monobook/handheld.css?97" />
+
-
<!--[if lt IE 5.5000]><style type="text/css">@import "/wiki/skins/monobook/IE50Fixes.css?97";</style><![endif]-->
+
-
<!--[if IE 5.5000]><style type="text/css">@import "/wiki/skins/monobook/IE55Fixes.css?97";</style><![endif]-->
+
-
<!--[if IE 6]><style type="text/css">@import "/wiki/skins/monobook/IE60Fixes.css?97";</style><![endif]-->
+
-
<!--[if IE 7]><style type="text/css">@import "/wiki/skins/monobook/IE70Fixes.css?97";</style><![endif]-->
+
-
<!--[if lt IE 7]><script type="text/javascript" src="/wiki/skins/common/IEFixes.js?97"></script>
+
-
<meta http-equiv="imagetoolbar" content="no" /><![endif]-->
+
-
+
-
<script type= "text/javascript">/*<![CDATA[*/
+
-
var skin = "monobook";
+
-
var stylepath = "/wiki/skins";
+
-
var wgArticlePath = "/wiki/index.php/$1";
+
-
var wgScriptPath = "/wiki";
+
-
var wgScript = "/wiki/index.php";
+
-
var wgServer = "http://proteopedia.org";
+
-
var wgCanonicalNamespace = "User";
+
-
var wgCanonicalSpecialPageName = false;
+
-
var wgNamespaceNumber = 2;
+
-
var wgPageName = "User:Adithya_Sagar/Workbench_newDNA";
+
-
var wgTitle = "Adithya Sagar/Workbench newDNA";
+
-
var wgAction = "raw";
+
-
var wgRestrictionEdit = [];
+
-
var wgRestrictionMove = [];
+
-
var wgArticleId = "365314";
+
-
var wgIsArticle = false;
+
-
var wgUserName = null;
+
-
var wgUserGroups = null;
+
-
var wgUserLanguage = "en";
+
-
var wgContentLanguage = "en";
+
-
var wgBreakFrames = true;
+
-
var wgCurRevisionId = 0;
+
-
/*]]>*/</script>
+
-
+
-
<script type="text/javascript" src="/wiki/skins/common/wikibits.js?97"><!-- wikibits js --></script>
+
-
<script type="text/javascript" src="/wiki/index.php?title=-&action=raw&gen=js&useskin=monobook"><!-- site js --></script>
+
-
<style type="text/css">/*<![CDATA[*/
+
-
@import "/wiki/index.php?title=MediaWiki:Common.css&usemsgcache=yes&action=raw&ctype=text/css&smaxage=18000";
+
-
@import "/wiki/index.php?title=MediaWiki:Monobook.css&usemsgcache=yes&action=raw&ctype=text/css&smaxage=18000";
+
-
@import "/wiki/index.php?title=-&action=raw&gen=css&maxage=18000";
+
-
/*]]>*/</style>
+
-
<!-- Head Scripts -->
+
-
<!-- these 3 lines added by EH -->
+
-
<script language='Javascript' type='text/javascript' src='/wiki/extensions/Jmol/Jmol.js'></script>
+
-
<script language='Javascript' type='text/javascript' src='/wiki/extensions/Jmol/JmolMediaWiki.js'></script>
+
-
<script language='Javascript' type='text/javascript'>jmolInitialize('/wiki/extensions/Jmol', false);</script>
+
-
<script language='Javascript' type='text/javascript'>jmolSetLinkCssClass('jmolLink')</script>
+
-
<script type="text/javascript" src="/wiki/skins/common/ajax.js?97"></script>
+
-
</head>
+
-
<body class="mediawiki ns-2 ltr page-User_Adithya_Sagar_Workbench_newDNA">
+
-
<div id="globalWrapper">
+
-
<div id="column-content">
+
-
<div id="content">
+
-
<a name="top" id="top"></a>
+
-
<div id="siteNotice"><p><i>First time at Proteopedia? Click on the <font color="green"><b>green links</b></font>, they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the <a href="http://proteopedia.org/wiki/index.php/Main_Page" class="external text" target="_aux" title="http://proteopedia.org/wiki/index.php/Main_Page" rel="nofollow">Main Page</a> to learn more.</i>
+
-
</p></div> <h1 class="firstHeading">Login Required</h1>
+
-
<div id="bodyContent">
+
-
<h3 id="siteSub">From Proteopedia</h3>
+
-
<div id="contentSub"></div>
+
-
<div id="jump-to-nav">Jump to: <a href="#column-one">navigation</a>, <a href="#searchInput">search</a></div> <!-- start content -->
+
-
<script type='text/javascript' src='/wiki/extensions/tooltip/wz_tooltip.js'></script><p>You must <a href="/wiki/index.php?title=Special:Userlogin&returnto=User:Adithya_Sagar/Workbench_newDNA" title="Special:Userlogin">log in</a> to view other pages.
+
-
</p>
+
-
<!--User:Adithya_Sagar/Workbench_newDNA--><p>Return to <a href="/wiki/index.php/Main_Page" title="Main Page">Main Page</a>.</p>
+
-
<div class="printfooter">
+
-
Retrieved from "<a href="http://proteopedia.org/wiki/index.php/User:Adithya_Sagar/Workbench_newDNA">http://proteopedia.org/wiki/index.php/User:Adithya_Sagar/Workbench_newDNA</a>"</div>
+
-
<!-- end content -->
+
-
<div class="visualClear"></div>
+
-
</div>
+
-
</div>
+
-
</div>
+
-
<div id="column-one">
+
-
<div id="p-cactions" class="portlet">
+
-
<h5>Views</h5>
+
-
<div class="pBody">
+
-
<ul>
+
-
<li id="ca-nstab-user" class="selected"><a href="/wiki/index.php/User:Adithya_Sagar/Workbench_newDNA" title="View the user page [c]" accesskey="c">User page</a></li>
+
-
<li id="ca-talk" class="new"><a href="/wiki/index.php?title=User_talk:Adithya_Sagar/Workbench_newDNA&action=edit" title="Discussion about the content page [t]" accesskey="t">Discussion</a></li>
+
-
<li id="ca-viewsource"><a href="/wiki/index.php?title=User:Adithya_Sagar/Workbench_newDNA&action=edit" title="This page is protected. You can view its source. [e]" accesskey="e">Edit this page</a></li>
+
-
<li id="ca-history"><a href="/wiki/index.php?title=User:Adithya_Sagar/Workbench_newDNA&action=history" title="Past versions of this page. [h]" accesskey="h">History</a></li>
+
-
</ul>
+
-
</div>
+
-
</div>
+
-
<div class="portlet" id="p-personal">
+
-
<h5>Personal tools</h5>
+
-
<div class="pBody">
+
-
<ul>
+
-
<li id="pt-login"><a href="/wiki/index.php?title=Special:Userlogin&returnto=User:Adithya_Sagar/Workbench_newDNA" title="You are encouraged to log in, it is not mandatory however. [o]" accesskey="o">Log in / request account</a></li>
+
-
</ul>
+
-
</div>
+
-
</div>
+
-
<div class="portlet" id="p-logo">
+
-
<a style="background-image: url(/wiki/logos/proteopedia_135x200px_v1.01.gif);" href="/wiki/index.php/Main_Page" title="Visit the Main Page [z]" accesskey="z"></a>
+
-
</div>
+
-
<script type="text/javascript"> if (window.isMSIE55) fixalpha(); </script>
+
-
<div class='portlet' id='p-navigation'>
+
-
<h5>Navigation</h5>
+
-
<div class='pBody'>
+
-
<ul>
+
-
<li id="n-mainpage"><a href="/wiki/index.php/Main_Page" title="Visit the Main Page [z]" accesskey="z">Main Page</a></li>
+
-
<li id="n-randompage"><a href="/wiki/index.php/Special:Random" title="Load a random page [x]" accesskey="x">Random page</a></li>
+
-
<li id="n-help"><a href="/wiki/index.php/Help:Contents" title="The place to find out.">Help</a></li>
+
-
</ul>
+
-
</div>
+
-
</div>
+
-
<div id="p-search" class="portlet">
+
-
<h5><label for="searchInput">Search</label></h5>
+
-
<div id="searchBody" class="pBody">
+
-
<form action="/wiki/index.php/Special:Search" id="searchform"><div>
+
-
<input id="searchInput" name="search" type="text" title="Search Proteopedia [f]" accesskey="f" value="" />
+
-
<input type='submit' name="go" class="searchButton" id="searchGoButton" value="Go" />
+
-
<input type='submit' name="fulltext" class="searchButton" id="mw-searchButton" value="Search" />
+
-
</div></form>
+
-
</div>
+
-
</div>
+
-
+
-
<!-- Jaime Prilusky 2008 -->
+
-
<div id="g-search" class="portlet">
+
-
<!-- Google CSE Search Box Begins -->
+
-
<form action="http://proteopedia.org/wiki/index.php/Proteopedia:GoogleSearch" id="cse-search-box">
+
-
<input type="hidden" name="cx" value="013685989656124535309:dg3ndix26ik" />
+
-
<input type="hidden" name="cof" value="FORID:11" />
+
-
<input type="text" name="q" size="25" />
+
-
<img src='http://www.google.com/images/poweredby_transparent/poweredby_FFFFFF.gif'> <input type="submit" name="sa" value="Search" />
+
-
</form>
+
-
<script type="text/javascript" src="http://www.google.com/coop/cse/brand?form=cse-search-box〈=en"></script>
+
-
<!-- Google CSE Search Box Ends -->
+
-
</div>
+
-
<!-- Jaime Prilusky 2008 -->
 
-
<!-- Google CSE Search Box Begins -->
 
-
<!--
 
-
<div id="g-search" class="portlet">
 
-
<form action="http://www.google.com/cse" id="cse-search-box">
 
-
<input type="hidden" name="cx" value="013685989656124535309:dg3ndix26ik" />
 
-
<input type="text" name="q" size="25" />
 
-
<input type="submit" name="sa" value="Search" />
 
-
</form>
 
-
<script type="text/javascript" src="http://www.google.com/coop/cse/brand?form=cse-search-box&lang=en"></script>
 
-
</div>
 
-
-->
 
-
<!-- Google CSE Search Box Ends -->
 
-
 
-
 
-
<div class="portlet" id="p-tb">
 
-
<h5>Toolbox</h5>
 
-
<div class="pBody">
 
-
<ul>
 
-
<!-- toolbox export page link Jaime Prilusky 2009 -->
 
-
<li id="t-exportpage"><a href="">Export this page</a>
 
-
<li id="t-whatlinkshere"><a href="/wiki/index.php/Special:Whatlinkshere/User:Adithya_Sagar/Workbench_newDNA" title="List of all wiki pages that link here [j]" accesskey="j">What links here</a></li>
 
-
<li id="t-recentchangeslinked"><a href="/wiki/index.php/Special:Recentchangeslinked/User:Adithya_Sagar/Workbench_newDNA" title="Recent changes in pages linked from this page [k]" accesskey="k">Related changes</a></li>
 
-
<li id="t-upload"><a href="/wiki/index.php/Special:Upload" title="Upload images or media files [u]" accesskey="u">Upload file</a></li>
 
-
<li id="t-specialpages"><a href="/wiki/index.php/Special:Specialpages" title="List of all special pages [q]" accesskey="q">Special pages</a></li>
 
-
</ul>
 
-
</div>
 
-
</div>
 
-
<!-- Jaime Prilusky 2009 ** Sidebar sponsors block -->
+
== Features of a DNA Molecule ==
-
<!-- begin of banner1
+
<applet load='B-DNA.pdb' size='540' name= 'B' frame='true' align='left' caption='B-DNA' scene ='User:Adithya_Sagar/Sandbox_DNA/B-dna/4'/>
-
<div class='generated-sidebar portlet'>
+
=== Double Helix ===
-
<h5>-</h5>
+
-
<div style="border: 1px solid #B0B0B0; background-color: #FFFFFF;">
+
-
<a href="http://www.weizmann.ac.il/ISPC">
+
-
<img width="100%" title="Hosted by ISPC"
+
-
alt="Hosted by ISPC"
+
-
src="&amp;lt;sidebar-banner1-imgsrc&amp;gt;" /></a>
+
-
</div></div>
+
-
end of banner1 -->
+
-
</div><!-- end of the left (by default at least) column -->
+
DNA consists of two polynucleotide chains, twisted around each other to form a double helix. The nucleotide in DNA is composed of of a <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/19'>5' phosphorylated sugar</scene> which is a beta-D-2'- deoxyribose and a purine or a pyrimidine <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/18'>base</scene>. The four types of bases are the two double ringed purine base <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/1'>Adenine (A)</scene> and <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/2'>Guanine (G)</scene> and the two single pyrimidine bases <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/6'>Thymine (T)</scene> and <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/5'>Cytosine (C)</scene>.Each nucleotide in a DNA chain is linked to another via <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/7'>3',5' phosphodiester bond</scene>. There are four nucleotides in DNA. The sugar-phosphate backbone of the DNA is very regular owing to the phosphodiester linkage whereas the ordering of bases is highly irregular.<ref name='Watson'> Watson, James D, Nancy H. Hopkins, Jeffrey W. Roberts, Joan Argetsinger Steitz, Alan M.Weiner ''Molecular Biology of Gene'' (4th ed.). The Benjamin/Cummings Publishing Company Inc.pp. 239-249. ISBN 0-8053-9612-8</ref>
-
<div class="visualClear"></div>
+
 
-
<div id="footer">
+
=== Complementary Bases ===
-
<div id="f-poweredbyico"><a href="http://www.mediawiki.org/"><img src="/wiki/skins/common/images/poweredby_mediawiki_88x31.png" alt="Powered by MediaWiki" /></a></div>
+
 
-
<ul id="f-list">
+
The two chains in a DNA are joined by hydrogen bonds between specific bases. Adenine forms a base pairs with thymine and guanine with cytosine. This specific base pairing between <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/14'>Adenine-Thymine</scene> and <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/15'>Guanine-Cytosine</scene> is known as Watson-Crick base pairing. The specificity of hydrogen bonding between bases leads to complementarity in the sequence of nucleotides in the two chains. Thus in a strand of DNA the content of adenine is equal to that of thymine and the guanine content is equal to the cytosine content. In general DNA with higher GC content is more stable than the one with higher AT content owing to the stabilization due to base stacking interactions.
-
<li id="privacy"><a href="/wiki/index.php/Proteopedia:Privacy_policy" title="Proteopedia:Privacy policy">Privacy policy</a></li>
+
 
-
<li id="about"><a href="/wiki/index.php/Proteopedia:About" title="Proteopedia:About">About Proteopedia</a></li>
+
=== DNA denaturation and renaturation ===
-
<li id="disclaimer"><a href="/wiki/index.php/Proteopedia:General_disclaimer" title="Proteopedia:General disclaimer">Disclaimers</a></li>
+
 
-
</ul>
+
A DNA double strand can be separated into two single strands by breaking the hydrogen bonds between them. This is known as DNA denaturation. Thermal energy provided by heating can be used to melt or denature DNA. Molecules with rich GC content are more stable and thus denature at higher temperatures compared to the ones with higher AT content. The melting temperature is defined as the temperature at which half the DNA strands are in double helical state and half are in random coil state.<ref>PMID: 9465037</ref> The denatured DNA single strands have an ability to renature and form double stranded DNA again.
-
</div>
+
 
-
+
=== Grooves ===
-
+
 
-
<script type="text/javascript">if (window.runOnloadHook) runOnloadHook();</script>
+
In a DNA double helix the <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/16'>beta-glycosyl bonds</scene> between C<sub>1'</sub>-N<sub>1</sub> branch off from one side of the base pair and do not lie opposite to each other. This results in unequally spaced sugar-phosphate backbones and gives rise to two grooves: the
-
<script type="text/javascript">
+
<scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/20'>major groove</scene> and the <scene name='User:Adithya_Sagar/Workbench_newDNA/B-dna/21'>minor groove</scene> of different width and depth. The minor groove is at the O<sub>2</sub> side of base pair and the major groove is on the opposite side.The floor of major groove is filled with nitrogen and oxygen atoms that project inward whereas in the minor groove they project outward. The larger size of major groove allows for the binding of DNA specific proteins.<ref name="Saenger"> Saenger, Wolfram (1984). ''Principles of Nucleic Acid Structure '' (1st ed). Springer-Verlag. pp. 398. ISBN 0-12-645750-6.</ref><ref name='Watson'> Watson, James D, Nancy H. Hopkins, Jeffrey W. Roberts, Joan Argetsinger Steitz, Alan M.Weiner ''Molecular Biology of Gene'' (4th ed.). The Benjamin/Cummings Publishing Company Inc.pp. 239-249. ISBN 0-8053-9612-8</ref>
-
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
+
 
-
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
+
===Tautomeric forms of bases===
-
</script>
+
 
-
<script type="text/javascript">
+
The hydrogen atoms on the bases move from nitrogen or oxygen atom on ring to another through shifts known as tautomeric shifts. However the hydrogens have preferred atomic locations. Based on the movement of hydrogen atoms the nitrogen atoms are in amino or imino configuration and the oxygen atoms are either in keto or enol forms. There is a preference for the amino and keto forms respectively which is very crucial for the biological functioning of DNA as it leads to the specificity in base pairing and thus complementarity of the chains.<ref name='Watson'> Watson, James D, Nancy H. Hopkins, Jeffrey W. Roberts, Joan Argetsinger Steitz, Alan M.Weiner ''Molecular Biology of Gene'' (4th ed.). The Benjamin/Cummings Publishing Company Inc.pp. 239-249. ISBN 0-8053-9612-8</ref>
-
var pageTracker = _gat._getTracker("UA-2136340-2");
+
 
-
pageTracker._initData();
+
==Forms of DNA==
-
pageTracker._trackPageview();
+
''See Also: [[Z-DNA]]''
-
</script></div>
+
 
-
<!-- Served in 0.116 secs. --></body></html>
+
=== A comparative representation of the three forms of DNA ===
 +
''Sources''<ref>http://203.129.231.23/indira/nacc/</ref>
 +
<applet load='A-DNA.pdb' name='A' size='350' frame='true' align='right' caption='A-DNA' align='left' scene='User:Adithya_Sagar/Sandbox_DNA/A-dna/1'/>
 +
<applet load='B-DNA.pdb' name='B' size='350' frame='true' align='right' caption='B-DNA' align='left' scene='User:Adithya_Sagar/Sandbox_DNA/B-dna/3'/>
 +
<applet load='Z-DNA.pdb' name='Z' size='350' frame='true' align='right' caption='Z-DNA' align='left' scene='User:Adithya_Sagar/Sandbox_DNA/Z-dna/1'/>
 +
 
 +
 
 +
 
 +
'''Synchronize the above applets by clicking the checkbox'''
 +
<jmol>
 +
<jmolCheckbox>
 +
<target>A</target>
 +
<!--<scriptWhenChecked>set syncMouse ON;set syncScript OFF;sync jmolAppletB,jmolAppletZ; sync > "set syncMouse
 +
ON;set syncScript OFF"</scriptWhenChecked>-->
 +
<scriptWhenChecked> sync jmolAppletB,jmolAppletZ </scriptWhenChecked>
 +
<scriptWhenUnchecked> sync OFF</scriptWhenUnchecked>
 +
<text> Synchronize</text>
 +
</jmolCheckbox>
 +
</jmol>
 +
 
 +
=== Helical Parameters of the three forms of DNA ===
 +
 
 +
DNA is a very flexible molecule and has the ability to exist in various forms based on the environmental conditions. Naturally occurring DNA double helices are classified into A, B and Z-types. A and B-forms of DNA are the right handed forms whereas [[Z-DNA]] is the left handed form. When hydrated the DNA generally assumes B-form. The A conformation is found when there is little water to interact with the helix and is also the conformation adopted by the RNA. The formation of Z-DNA occurs with the methylation of deoxycytosine residues and also during transcription where negative supercoiling stabilizes it.
 +
 
 +
{| class="wikitable" align= "center''
 +
|-
 +
!Parameter
 +
!A-DNA
 +
!B-DNA
 +
!Z-DNA
 +
|-
 +
|Helix sense ||align="center"| right-handed ||align="center"| right-handed ||align="center"| left-handed
 +
|-
 +
|Residues per turn ||align="right"| 11 ||align="right"| 10.5 ||align="right"| 12
 +
|-
 +
|Axial rise [Å] ||align="right"| 2.55 ||align="right"| 3.4 ||align="right"| 3.7
 +
|-
 +
|Helix pitch(°) ||align="right"| 28 ||align="right"| 34 ||align="right"| 45
 +
|-
 +
|Base pair tilt(°) ||align="right"| 20 ||align="right"| −6 ||align="right"| 7
 +
|-
 +
|Rotation per residue (°) ||align="right"| 33||align="right"| 36||align="right"|-30
 +
|-
 +
|Diameter of helix [Å]||align="right"| 23||align="right"| 20||align="right"| 18
 +
|-
 +
|Glycosidic bond configuration<br\>dA,dT,dC<br\>dG ||align="center"| <br\>anti<br\>anti ||align="center"| <br\>anti<br\>anti ||align="center"| <br\>anti<br\>syn
 +
|-
 +
|Sugar pucker<br\>dA,dT,dC<br\>dG ||align="center"| <br\>C3'-endo<br\>C3'-endo ||align="center"|<br\> C2'-endo<br\>C2'-endo ||align="center"| <br\>C2'-endo<br\>C3'-endo
 +
|-
 +
|Intrastrand phosphate-phosphate distance [Å] <br\>dA,dT,dC<br\>dG ||align="center"| <br\>5.9<br\>5.9||align="center"| <br\>7.0<br\>7.0||align="center"| <br\>7.0<br\> 5.9
 +
|-
 +
|colspan="4"|''Sources:<ref name="Rich1984">PMID:6383204</ref><ref name="Rich1979">PMID: 514347</ref><ref> Sinden, Richard R (1994-01-15). ''DNA structure and function'' (1st ed.). Academic Press. pp. 398. ISBN 0-12-645750-6.</ref>
 +
|}
 +
 
 +
== Structural Transformation between A and B DNA ==
 +
 
 +
<!-- Synchronizing both the applets in two different perspectives-->
 +
'''Synchronize the applets below by clicking the checkbox'''
 +
<jmol>
 +
<jmolCheckbox>
 +
<target>5</target>
 +
<scriptWhenChecked>set syncMouse ON; set syncScript OFF;sync jmolApplet5</scriptWhenChecked>
 +
<scriptWhenUnchecked>sync OFF</scriptWhenUnchecked>
 +
<text>Synchronize</text>
 +
</jmolCheckbox>
 +
</jmol>
 +
 
 +
<!-- Generation of smooth transition between animated morphs each of which depicts a different change-->
 +
<!-- Loading and animating Initial Morph-->
 +
<jmol>
 +
<jmolApplet>
 +
<size>660</size>
 +
<color>white</color>
 +
<uploadedFileContents>morph_a-b.pdb</uploadedFileContents>
 +
<script>animation ON; animation mode PALINDROME; cartoon ON; save state ab </script> <!-- State is saved here when page loads but unable to restore state. It is being required to save state again and then restore works-->
 +
</jmolApplet>
 +
</jmol>
 +
 
 +
<!--To activate the below options saving initial state again as restore state after above step is not working-->
 +
<jmol>
 +
<jmolButton>
 +
<target>5</target>
 +
<script>moveto 1.0 0 0 1 0 100.0 0.0 0.0;load/wiki/images/9/9e/Morph_a-b.pdb;animation ON; animation mode PALINDROME; cartoon ON;save state ab</script> <!-- This is required as the initial save state is unable to restore state-->
 +
<text>Click here and activate the below options </text>
 +
</jmolButton>
 +
</jmol>
 +
 
 +
<!--Group of Actions which show base pair shift, sugar pucker change and difference in space filling models in A and B DNA -->
 +
<jmol>
 +
<jmolRadioGroup>
 +
<target>5</target>
 +
<item>
 +
<script> moveto 1.0 0 0 1 0 180.0 0.0 0.0;restore state ab; animation ON;animation mode palindrome;cartoon ON;spacefill on; spacefill 90;wireframe on;wireframe 50;zoom 180;select 9:a,4:b;hbonds ON;hbonds calculate;hbonds 0.09;select!selected; color translucent 0.9;set echo bottom centre;font echo 20 serif bolditalic;color echo green; echo"Base pair shift between A and B DNA"</script>
 +
<text>Shift in Base Pair between A-B DNA</text>
 +
</item>
 +
<item>
 +
<script> moveto 1.0 0 0 1 0 400.0 0.0 0.0; restore state ab;cartoon OFF;spacefill ON; spacefill 90; wireframe ON; wireframe 50;select 9:a; select!selected; color translucent 0.9; select!selected; centre selected;zoom 400;set echo bottom centre;font echo 20 serif bolditalic;color echo green; echo"Change in Sugar Puckering from C2' endo in B-DNA to C3' endo in A-DNA"</script>
 +
<text>Change in Sugar Puckering from C2' endo in B-DNA to C3' endo in A-DNA</text>
 +
</item>
 +
<item>
 +
<script>moveto 1.0 0 0 1 0 150.0 0.0 0.0;restore state ab;spacefill ON; spacefill 400; zoom 150; cartoon OFF;animation ON; animation mode PALINDROME;set echo bottom centre;font echo 20 serif bolditalic;color echo green; echo"Transition between A-B DNA spacefilling models"</script>
 +
<text>Transition between A-B DNA spacefilling models</text>
 +
</item>
 +
</jmolRadioGroup>
 +
</jmol>
 +
 
 +
<!-- Restores Original State for Applet 4-->
 +
<jmol>
 +
<jmolButton>
 +
<target>5</target>
 +
<script>moveto 1.0 0 0 1 0 100.0 0.0 0.0;load/wiki/images/9/9e/Morph_a-b.pdb;animation ON; animation mode PALINDROME; cartoon ON;save state ab</script>
 +
<text>Restore Original State </text>
 +
</jmolButton>
 +
</jmol>
 +
 
 +
<!-- Applet 5-->
 +
<jmol>
 +
<jmolApplet>
 +
<color>white</color>
 +
<size>660</size>
 +
<uploadedFileContents>Morph_test.pdb</uploadedFileContents>
 +
<script>animation ON;animation mode PALINDROME;cartoon ON; save state ab_new</script>
 +
</jmolApplet>
 +
</jmol>
 +
 
 +
<jmol>
 +
<jmolButton>
 +
<target>6</target>
 +
<script>moveto 1.0 0 0 1 0 100.0 0.0 0.0;load/wiki/images/5/50/Morph_test.pdb;animation ON; animation mode PALINDROME; cartoon ON;save state ab</script>
 +
<text>Click here and activate options below </text>
 +
</jmolButton>
 +
</jmol>
 +
 
 +
<jmol>
 +
<jmolRadioGroup>
 +
<target>6</target>
 +
<item>
 +
<script> moveto 1.0 0 0 1 0 180.0 0.0 0.0;restore state ab; animation ON;animation mode palindrome;cartoon ON;spacefill on; spacefill 90;wireframe on;wireframe 50;zoom 180;select 9:a,4:b;hbonds ON;hbonds calculate;hbonds 0.09;select!selected; color translucent 0.9;set echo bottom centre;font echo 20 serif bolditalic;color echo green; echo"Shift in Base Pair between A-B DNA"</script>
 +
<text>Shift in Base Pair between A-B DNA</text>
 +
</item>
 +
<item>
 +
<script> moveto 1.0 0 0 1 0 400.0 0.0 0.0; restore state ab;cartoon OFF;spacefill ON; spacefill 90; wireframe ON; wireframe 50;select 9:a; select!selected; color translucent 0.9; select!selected; centre selected;zoom 400;set echo bottom centre;font echo 20 serif bolditalic;color echo green; echo"Change in Sugar Puckering from C2' endo in B-DNA to C3' endo in A-DNA"</script>
 +
<text>Change in Sugar Puckering from C2' endo in B-DNA to C3' endo in A-DNA</text>
 +
</item>
 +
<item>
 +
<script>moveto 1.0 0 0 1 0 150.0 0.0 0.0;restore state ab;spacefill ON; spacefill 400; zoom 150; cartoon OFF;animation ON; animation mode PALINDROME;set echo bottom centre;font echo 20 serif bolditalic;color echo green; echo"Transition between A-B DNA spacefilling models"</script>
 +
<text>Transition between A-B DNA spacefilling models</text>
 +
</item>
 +
</jmolRadioGroup>
 +
</jmol>
 +
 
 +
<jmol>
 +
<jmolButton>
 +
<target>6</target>
 +
<script>moveto 1.0 0 0 1 0 100.0 0.0 0.0;load/wiki/images/5/50/Morph_test.pdb;animation ON; animation mode PALINDROME; cartoon ON;save state ab</script>
 +
<text>Restore Original State </text>
 +
</jmolButton>
 +
</jmol>
 +
 
 +
''Morph Sources'' <ref>PMID: 10734184</ref>
 +
 
 +
 
 +
<!-- Problems with script synchronization
 +
<jmol>
 +
<jmolButton>
 +
<target>0</target>
 +
<script>sync jmolApplet1; sync * "geoSurface ON" ; sync* geoSurface vdw</script>
 +
<script>geoSurface ON; geoSurface vdw; color opaque cpk</script>
 +
<script>spacefill ON; spacefill 600; hide all;color opaque cpk</script>
 +
<text>Spacefilling Model</text>
 +
</jmolButton>
 +
</jmol>
 +
 
 +
Problems with script synchronization
 +
<jmol>
 +
<jmolButton>
 +
<target>0</target>
 +
<script>sync jmolApplet1; sync "geoSurface OFF"</script>
 +
<script>geoSurface OFF</script>
 +
<text>Vanderwaals Surface OFF</text>
 +
</jmolButton>
 +
</jmol>-->
 +
 
 +
== Biological Functions ==
 +
''Sources:''<ref name='Rawn' > Rawn,David J. "Biochemistry"(1st ed.) Harper&Row,Publishers, Inc.pp. 1024-1050. ISBN-0-06045335-4</ref>
 +
 
 +
=== Replication===
 +
DNA undergoes what is known as semi conservative mode of replication wherein the daughter DNA contains one DNA strand of the parent. The replication proceeds through the unwinding of double helix followed by synthesis primers from where the replication begins. An enzyme DNA polymerase synthesizes complementary strands to each parent strand from 5'-3' direction.
 +
 
 +
===Transcription and Translation===
 +
The expression of genes into proteins and is a process involving two stages called transcription and translation. In the transcription stage a strand of DNA molecule serves as a template for the synthesis of an RNA molecule called messenger RNA. This messenger RNA is then translated into proteins on ribosomes.
 +
 
 +
== See Also ==
 +
*[[Z-DNA]]
 +
*[[DNA Replication,Transcription and Translation]]
 +
 
 +
== References==
 +
<references/>
 +
 
 +
<!--Adithya Sagar-->

Revision as of 08:03, 3 September 2009

B-DNA

Drag the structure with the mouse to rotate

Deoxyribonucleic acid or DNA is a molecule which is the carrier of genetic information in nearly all the living organisms. It contains the biological instructions for the development, survival and reproduction of organisms. DNA is found in the nucleus of a cell where it is packaged into a compact form called chromosome with the help of several proteins known as histones. It is also found in cell structures called mitochondria. The genetic information is stored as a sequence of nucleotides in special regions known as genes which are used to make proteins. The expression of genetic information into proteins is a two stage process wherein the sequence of nucleotides in DNA is converted to a molecule called Ribonucleic acid or RNA by a process called transcription which then is used to make proteins by another process called translation. The human genome contains nearly 3 billion bases with 20,000 genes on 23 chromosomes. [1]

DNA was first discovered by a German Biochemist Frederich Miescher in the year 1869.[2] Based on the works on Erwin Chargaff, James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin the structure of DNA was discovered in the year 1953. The structure of DNA is called a double helix which consists two complementary strands of polynucleotides that run in opposite directions and are held together by hydrogen bonds between them. This structure helps the DNA in replicating itself during cell division and also for a single strand to serve as template during transcription. [1]


Contents

Features of a DNA Molecule

B-DNA

Drag the structure with the mouse to rotate

Double Helix

DNA consists of two polynucleotide chains, twisted around each other to form a double helix. The nucleotide in DNA is composed of of a which is a beta-D-2'- deoxyribose and a purine or a pyrimidine . The four types of bases are the two double ringed purine base and and the two single pyrimidine bases and .Each nucleotide in a DNA chain is linked to another via . There are four nucleotides in DNA. The sugar-phosphate backbone of the DNA is very regular owing to the phosphodiester linkage whereas the ordering of bases is highly irregular.[3]

Complementary Bases

The two chains in a DNA are joined by hydrogen bonds between specific bases. Adenine forms a base pairs with thymine and guanine with cytosine. This specific base pairing between and is known as Watson-Crick base pairing. The specificity of hydrogen bonding between bases leads to complementarity in the sequence of nucleotides in the two chains. Thus in a strand of DNA the content of adenine is equal to that of thymine and the guanine content is equal to the cytosine content. In general DNA with higher GC content is more stable than the one with higher AT content owing to the stabilization due to base stacking interactions.

DNA denaturation and renaturation

A DNA double strand can be separated into two single strands by breaking the hydrogen bonds between them. This is known as DNA denaturation. Thermal energy provided by heating can be used to melt or denature DNA. Molecules with rich GC content are more stable and thus denature at higher temperatures compared to the ones with higher AT content. The melting temperature is defined as the temperature at which half the DNA strands are in double helical state and half are in random coil state.[4] The denatured DNA single strands have an ability to renature and form double stranded DNA again.

Grooves

In a DNA double helix the between C1'-N1 branch off from one side of the base pair and do not lie opposite to each other. This results in unequally spaced sugar-phosphate backbones and gives rise to two grooves: the and the of different width and depth. The minor groove is at the O2 side of base pair and the major groove is on the opposite side.The floor of major groove is filled with nitrogen and oxygen atoms that project inward whereas in the minor groove they project outward. The larger size of major groove allows for the binding of DNA specific proteins.[5][3]

Tautomeric forms of bases

The hydrogen atoms on the bases move from nitrogen or oxygen atom on ring to another through shifts known as tautomeric shifts. However the hydrogens have preferred atomic locations. Based on the movement of hydrogen atoms the nitrogen atoms are in amino or imino configuration and the oxygen atoms are either in keto or enol forms. There is a preference for the amino and keto forms respectively which is very crucial for the biological functioning of DNA as it leads to the specificity in base pairing and thus complementarity of the chains.[3]

Forms of DNA

See Also: Z-DNA

A comparative representation of the three forms of DNA

Sources[6]

A-DNA

Drag the structure with the mouse to rotate

B-DNA

Drag the structure with the mouse to rotate

Z-DNA

Drag the structure with the mouse to rotate


Synchronize the above applets by clicking the checkbox

Helical Parameters of the three forms of DNA

DNA is a very flexible molecule and has the ability to exist in various forms based on the environmental conditions. Naturally occurring DNA double helices are classified into A, B and Z-types. A and B-forms of DNA are the right handed forms whereas Z-DNA is the left handed form. When hydrated the DNA generally assumes B-form. The A conformation is found when there is little water to interact with the helix and is also the conformation adopted by the RNA. The formation of Z-DNA occurs with the methylation of deoxycytosine residues and also during transcription where negative supercoiling stabilizes it.

Parameter A-DNA B-DNA Z-DNA
Helix sense right-handed right-handed left-handed
Residues per turn 11 10.5 12
Axial rise [Å] 2.55 3.4 3.7
Helix pitch(°) 28 34 45
Base pair tilt(°) 20 −6 7
Rotation per residue (°) 33 36-30
Diameter of helix [Å] 23 20 18
Glycosidic bond configuration
dA,dT,dC
dG

anti
anti

anti
anti

anti
syn
Sugar pucker
dA,dT,dC
dG

C3'-endo
C3'-endo

C2'-endo
C2'-endo

C2'-endo
C3'-endo
Intrastrand phosphate-phosphate distance [Å]
dA,dT,dC
dG

5.9
5.9

7.0
7.0

7.0
5.9
Sources:[7][8][9]

Structural Transformation between A and B DNA

Synchronize the applets below by clicking the checkbox

Drag the structure with the mouse to rotate

Drag the structure with the mouse to rotate

Morph Sources [10]


Biological Functions

Sources:[11]

Replication

DNA undergoes what is known as semi conservative mode of replication wherein the daughter DNA contains one DNA strand of the parent. The replication proceeds through the unwinding of double helix followed by synthesis primers from where the replication begins. An enzyme DNA polymerase synthesizes complementary strands to each parent strand from 5'-3' direction.

Transcription and Translation

The expression of genes into proteins and is a process involving two stages called transcription and translation. In the transcription stage a strand of DNA molecule serves as a template for the synthesis of an RNA molecule called messenger RNA. This messenger RNA is then translated into proteins on ribosomes.

See Also

References

  1. 1.0 1.1 http://www.genome.gov/25520880
  2. Dahm R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet. 2008 Jan;122(6):565-81. Epub 2007 Sep 28. PMID:17901982 doi:10.1007/s00439-007-0433-0
  3. 3.0 3.1 3.2 Watson, James D, Nancy H. Hopkins, Jeffrey W. Roberts, Joan Argetsinger Steitz, Alan M.Weiner Molecular Biology of Gene (4th ed.). The Benjamin/Cummings Publishing Company Inc.pp. 239-249. ISBN 0-8053-9612-8
  4. SantaLucia J Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460-5. PMID:9465037
  5. Saenger, Wolfram (1984). Principles of Nucleic Acid Structure (1st ed). Springer-Verlag. pp. 398. ISBN 0-12-645750-6.
  6. http://203.129.231.23/indira/nacc/
  7. Rich A, Nordheim A, Wang AH. The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem. 1984;53:791-846. PMID:6383204 doi:http://dx.doi.org/10.1146/annurev.bi.53.070184.004043
  8. Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680-6. PMID:514347
  9. Sinden, Richard R (1994-01-15). DNA structure and function (1st ed.). Academic Press. pp. 398. ISBN 0-12-645750-6.
  10. Krebs WG, Gerstein M. The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework. Nucleic Acids Res. 2000 Apr 15;28(8):1665-75. PMID:10734184
  11. Rawn,David J. "Biochemistry"(1st ed.) Harper&Row,Publishers, Inc.pp. 1024-1050. ISBN-0-06045335-4


Personal tools