| Structural highlights
2cvt is a 1 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | ,
| Related: | 1zyz, 2cvs, 2cvu, 2cvv, 2cvw, 2cvx, 2cvy |
Activity: | Ribonucleoside-diphosphate reductase, with EC number 1.17.4.1 |
Resources: | FirstGlance, OCA, RCSB, PDBsum |
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Ribonucleotide reductase catalyzes a crucial step in de novo DNA synthesis and is allosterically controlled by relative levels of dNTPs to maintain a balanced pool of deoxynucleoside triphosphates in the cell. In eukaryotes, the enzyme comprises a heterooligomer of alpha(2) and beta(2) subunits. The alpha subunit, Rnr1, contains catalytic and regulatory sites. Here, we report the only x-ray structures of the eukaryotic alpha subunit of ribonucleotide reductase from Saccharomyces cerevisiae. The structures of the apo-, AMPPNP only-, AMPPNP-CDP-, AMPPNP-UDP-, dGTP-ADP- and TTP-GDP-bound complexes give insight into substrate and effector binding and specificity cross-talk. These are Class I structures with the only fully ordered catalytic sites, including loop 2, a stretch of polypeptide that spans specificity and catalytic sites, conferring specificity. Binding of specificity effector rearranges loop 2; in our structures, this rearrangement moves P294, a residue unique to eukaryotes, out of the catalytic site, accommodating substrate binding. Substrate binding further rearranges loop 2. Cross-talk, by which effector binding regulates substrate preference, occurs largely through R293 and Q288 of loop 2, which are analogous to residues in Thermotoga maritima that mediate cross-talk. However loop-2 conformations and residue-substrate interactions differ substantially between yeast and T. maritima. In most effector-substrate complexes, water molecules help mediate substrate-loop 2 interactions. Finally, the substrate ribose binds with its 3' hydroxyl closer than its 2' hydroxyl to C218 of the catalytic redox pair. We also see a conserved water molecule at the catalytic site in all our structures, near the ribose 2' hydroxyl.
Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation.,Xu H, Faber C, Uchiki T, Fairman JW, Racca J, Dealwis C Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4022-7. Epub 2006 Mar 6. PMID:16537479[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Xu H, Faber C, Uchiki T, Fairman JW, Racca J, Dealwis C. Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation. Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4022-7. Epub 2006 Mar 6. PMID:16537479
|