Publication Abstract from PubMed
The crystal structures of the catalytic fragments of 'lethal toxin' from Clostridium sordellii and of 'alpha-toxin' from Clostridium novyi have been established. Almost half of the residues follow the chain fold of the glycosyl-transferase type A family of enzymes; the other half forms large alpha-helical protrusions that are likely to confer specificity for the respective targeted subgroup of Rho proteins in the cell. In the crystal, the active center of alpha-toxin contained no substrates and was disassembled, whereas that of lethal toxin, which was ligated with the donor substrate UDP-glucose and cofactor Mn2+, was catalytically competent. Surprisingly, the structure of lethal toxin with Ca2+ (instead of Mn2+) at the cofactor position showed a bound donor substrate with a disassembled active center, indicating that the strictly octahedral coordination sphere of Mn2+ is indispensable to the integrity of the enzyme. The homologous structures of alpha-toxin without substrate, distorted lethal toxin with Ca2+ plus donor, active lethal toxin with Mn2+ plus donor and the homologous Clostridium difficile toxin B with a hydrolyzed donor have been lined up to show the geometry of several reaction steps. Interestingly, the structural refinement of one of the three crystallographically independent molecules of Ca2+-ligated lethal toxin resulted in the glucosyl half-chair conformation expected for glycosyl-transferases that retain the anomeric configuration at the C1 atom. A superposition of six acceptor substrates bound to homologous enzymes yielded the position of the nucleophilic acceptor atom with a deviation of <1 A. The resulting donor-acceptor geometry suggests that the reaction runs as a circular electron transfer in a six-membered ring, which involves the deprotonation of the nucleophile by the beta-phosphoryl group of the donor substrate UDP-glucose.
Conformational changes and reaction of clostridial glycosylating toxins.,Ziegler MO, Jank T, Aktories K, Schulz GE J Mol Biol. 2008 Apr 11;377(5):1346-56. Epub 2008 Jan 5. PMID:18325534[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.