Structural highlights
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The 2.0-angstrom structure of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) catalytic subunit bound to a deletion mutant of a regulatory subunit (RIalpha) defines a previously unidentified extended interface. The complex provides a molecular mechanism for inhibition of PKA and suggests how cAMP binding leads to activation. The interface defines the large lobe of the catalytic subunit as a stable scaffold where Tyr247 in the G helix and Trp196 in the phosphorylated activation loop serve as anchor points for binding RIalpha. These residues compete with cAMP for the phosphate binding cassette in RIalpha. In contrast to the catalytic subunit, RIalpha undergoes major conformational changes when the complex is compared with cAMP-bound RIalpha. The inhibitor sequence docks to the active site, whereas the linker, also disordered in free RIalpha, folds across the extended interface. The beta barrel of cAMP binding domain A, which is the docking site for cAMP, remains largely intact in the complex, whereas the helical subdomain undergoes major reorganization.
Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA.,Kim C, Xuong NH, Taylor SS Science. 2005 Feb 4;307(5710):690-6. PMID:15692043[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kim C, Xuong NH, Taylor SS. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science. 2005 Feb 4;307(5710):690-6. PMID:15692043 doi:307/5710/690