Structural highlights
Publication Abstract from PubMed
KaiA protein that stimulates KaiC phosphorylation in the cyanobacterial circadian clock was recently shown to be destabilized by dibromothymoquinone (DBMIB), thus revealing KaiA as a sensor of the plastoquinone (PQ) redox state and suggesting an indirect control of the clock by light through PQ redox changes. Here we show using X-ray crystallography that several DBMIBs are bound to KaiA dimer. Some binding modes are consistent with oligomerization of N-terminal KaiA pseudoreceiver domains and/or reduced interdomain flexibility. DBMIB bound to the C-terminal KaiA (C-KaiA) domain and limited stimulation of KaiC kinase activity by C-KaiA in the presence of DBMIB demonstrate that the cofactor may weakly inhibit KaiA-KaiC binding.
Crystal Structure of the Redox-Active Cofactor Dibromothymoquinone Bound to Circadian Clock Protein KaiA and Structural Basis for Dibromothymoquinone's Ability to Prevent Stimulation of KaiC Phosphorylation by KaiA.,Pattanayek R, Sidiqi SK, Egli M Biochemistry. 2012 Oct 5. PMID:23020633[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Pattanayek R, Sidiqi SK, Egli M. Crystal Structure of the Redox-Active Cofactor Dibromothymoquinone Bound to Circadian Clock Protein KaiA and Structural Basis for Dibromothymoquinone's Ability to Prevent Stimulation of KaiC Phosphorylation by KaiA. Biochemistry. 2012 Oct 5. PMID:23020633 doi:http://dx.doi.org/10.1021/bi301222t