Structural highlights
Function
[CEFE_STRCL] Catalyzes the step from penicillin N to deacetoxy-cephalosporin C.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Penicillins and cephalosporins are among the most widely used therapeutic agents. These antibiotics are produced from fermentation-derived materials as their chemical synthesis is not commercially viable. Unconventional steps in their biosynthesis are catalysed by Fe(II)-dependent oxidases/oxygenases; isopenicillin N synthase (IPNS) creates in one step the bicyclic nucleus of penicillins, and deacetoxycephalosporin C synthase (DAOCS) catalyses the expansion of the penicillin nucleus into the nucleus of cephalosporins. Both enzymes use dioxygen-derived ferryl intermediates in catalysis but, in contrast to IPNS, the ferryl form of DAOCS is produced by the oxidative splitting of a co-substrate, 2-oxoglutarate (alpha-ketoglutarate). This route of controlled ferryl formation and reaction is common to many mononuclear ferrous enzymes, which participate in a broader range of reactions than their well-characterized counterparts, the haem enzymes. Here we report the first crystal structure of a 2-oxoacid-dependent oxygenase. High-resolution structures for apo-DAOCS, the enzyme complexed with Fe(II), and with Fe(II) and 2-oxoglutarate, were obtained from merohedrally twinned crystals. Using a model based on these structures, we propose a mechanism for ferryl formation.
Structure of a cephalosporin synthase.,Valegard K, van Scheltinga AC, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee HJ, Baldwin JE, Schofield CJ, Hajdu J, Andersson I Nature. 1998 Aug 20;394(6695):805-9. PMID:9723623[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Valegard K, van Scheltinga AC, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee HJ, Baldwin JE, Schofield CJ, Hajdu J, Andersson I. Structure of a cephalosporin synthase. Nature. 1998 Aug 20;394(6695):805-9. PMID:9723623 doi:http://dx.doi.org/10.1038/29575