Sandbox Reserved 987

From Proteopedia

Revision as of 19:52, 24 February 2015 by Lawrence Tran (Talk | contribs)
Jump to: navigation, search
This Sandbox is Reserved from 20/01/2015, through 30/04/2016 for use in the course "CHM 463" taught by Mary Karpen at the Grand Valley State University. This reservation includes Sandbox Reserved 987 through Sandbox Reserved 996.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Contents

Cocaine Esterase

Cocaine Esterase

Drag the structure with the mouse to rotate

This is a default text for your page '. Click above on edit this page' to modify. Be careful with the < and > signs. You may include any references to papers as in: the use of JSmol in Proteopedia [1] or to the article describing Jmol [2] to the rescue.

Overview

Cocaine Esterase (CocE) is the most efficient protein to hydrolyze the cocaine domain known to date in vivo.[3] Cocaine Esterase is used in bacterium Rhodococcus which hydrolyzes the cocaine that it uptakes and uses it for carbons and nitrogens. Although this protein metabolizes cocaine in bacterium, it is sure to induce an immune response as it is foreign to the human body. This could mitigate the effects of CocE if a person had suffered from cocaine toxicity.

Structure

Mechanism

Cocaine esterase is used to catalyze the following reaction: cocaine + H2O ←→ ecgonine methyl ester + benzoate [4] Reaction mechanism for cocaine esterase-catalyzed hydrolyses of (+)- and (-)-cocaine: unexpected common rate-determining step. Liu J1, Zhao X, Yang W, Zhan CG.

Regulation

This is a sample scene created with SAT to by Group, and another to make of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.

</StructureSection>

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. "Effects of cocaine esterase following its repeated administration with cocaine in mice" Mei-Chaun Ko, Diwahar Narasimhan, Aaron A. Berlin, Nicholas W. Lukacs, Roger K. Sunahara, James H. Woods. Drug and Alcohol Dependence 1 May 2009;101:202-09. doi: 10.1016/j.drugalcdep.2009.01.002
  4. Cocaine esterase From Wikipedia, the free encyclopedia
Personal tools