| Structural highlights
3mzk is a 4 chain structure with sequence from Atcc 18824. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Related: | 3mzl |
Gene: | ANU3, L8167.4, SEC13, YLR208W (ATCC 18824), LPF1W, SEC16, YPL085W (ATCC 18824) |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[SEC13_YEAST] Functions as a component of the nuclear pore complex (NPC) and the COPII coat. It is one of 5 proteins constituting the COPII coat, which is involved in anterograde (ER to Golgi) double-membrane transport vesicle formation. First the small GTPase SAR1, activated by and binding to the integral ER membrane protein SEC12, exchanges GDP for GTP and recruits the heterodimer SEC23/24, which in turn recruits the heterotetramer SEC13-SEC31. The polymerization of COPII coat complexes then causes physically the deformation (budding) of the membrane, leading to the creation of a transport vesicle. The COPII complex is dissociated upon SAR1-GTP hydrolysis to SAR1-GDP. SEC23 functions as the SAR1 GTPase activating protein, whose activity is stimulated in the presence of SEC13/31. SEC13 is directly or indirectly required for normal ER membrane and nuclear envelope morphology. It also functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. SEC13 is required for efficient mRNA export from the nucleus to the cytoplasm and for correct nuclear pore biogenesis and distribution. Component of the SEA complex which coats the vacuolar membrane and is involved in intracellular trafficking, autophagy, response to nitrogen starvation, and amino acid biogenesis.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [SEC16_YEAST] Involved in the initiation of assembly of the COPII coat required for the formation of transport vesicles from the endoplasmic reticulum (ER) and the selection of cargo molecules. Also involved in autophagy.[20] [21] [22] [23] [24] [25] [26] [27] [28]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Ancestral coatomer element 1 (ACE1) proteins assemble latticework coats for COPII vesicles and the nuclear pore complex. The ACE1 protein Sec31 and Sec13 make a 2:2 tetramer that forms the edge element of the COPII outer coat. In this study, we report that the COPII accessory protein Sec16 also contains an ACE1. The 165-kD crystal structure of the central domain of Sec16 in complex with Sec13 was solved at 2.7-A resolution. Sec16 and Sec13 also make a 2:2 tetramer, another edge element for the COPII system. Domain swapping at the ACE1-ACE1 interface is observed both in the prior structure of Sec13-Sec31 and in Sec13-Sec16. A Sec31 mutant in which domain swapping is prevented adopts an unprecedented laminated structure, solved at 2.8-A resolution. Our in vivo data suggest that the ACE1 element of Sec31 can functionally replace the ACE1 element of Sec16. Our data support Sec16 as a scaffold for the COPII system and a template for the Sec13-Sec31 coat.
Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat.,Whittle JR, Schwartz TU J Cell Biol. 2010 Aug 9;190(3):347-61. PMID:20696705[29]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Siniossoglou S, Wimmer C, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell. 1996 Jan 26;84(2):265-75. PMID:8565072
- ↑ Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980 Aug;21(1):205-15. PMID:6996832
- ↑ Novick P, Ferro S, Schekman R. Order of events in the yeast secretory pathway. Cell. 1981 Aug;25(2):461-9. PMID:7026045
- ↑ Kaiser CA, Schekman R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell. 1990 May 18;61(4):723-33. PMID:2188733
- ↑ Bednarek SY, Ravazzola M, Hosobuchi M, Amherdt M, Perrelet A, Schekman R, Orci L. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell. 1995 Dec 29;83(7):1183-96. PMID:8548805
- ↑ Kuehn MJ, Schekman R, Ljungdahl PO. Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro. J Cell Biol. 1996 Nov;135(3):585-95. PMID:8909535
- ↑ Roberg KJ, Bickel S, Rowley N, Kaiser CA. Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics. 1997 Dec;147(4):1569-84. PMID:9409822
- ↑ Roberg KJ, Rowley N, Kaiser CA. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J Cell Biol. 1997 Jun 30;137(7):1469-82. PMID:9199164
- ↑ Sutterlin C, Doering TL, Schimmoller F, Schroder S, Riezman H. Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J Cell Sci. 1997 Nov;110 ( Pt 21):2703-14. PMID:9427388
- ↑ Campbell JL, Schekman R. Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):837-42. PMID:9023343
- ↑ Matsuoka K, Schekman R. The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods. 2000 Apr;20(4):417-28. PMID:10720463 doi:10.1006/meth.2000.0955
- ↑ Siniossoglou S, Lutzmann M, Santos-Rosa H, Leonard K, Mueller S, Aebi U, Hurt E. Structure and assembly of the Nup84p complex. J Cell Biol. 2000 Apr 3;149(1):41-54. PMID:10747086
- ↑ Lederkremer GZ, Cheng Y, Petre BM, Vogan E, Springer S, Schekman R, Walz T, Kirchhausen T. Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10704-9. Epub 2001 Sep 4. PMID:11535824 doi:10.1073/pnas.191359398
- ↑ Matsuoka K, Schekman R, Orci L, Heuser JE. Surface structure of the COPII-coated vesicle. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13705-9. PMID:11717432 doi:10.1073/pnas.241522198
- ↑ Ryan KJ, Wente SR. Isolation and characterization of new Saccharomyces cerevisiae mutants perturbed in nuclear pore complex assembly. BMC Genet. 2002 Sep 5;3:17. Epub 2002 Sep 5. PMID:12215173
- ↑ Lutzmann M, Kunze R, Buerer A, Aebi U, Hurt E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 2002 Feb 1;21(3):387-97. PMID:11823431 doi:10.1093/emboj/21.3.387
- ↑ Fatal N, Suntio T, Makarow M. Selective protein exit from yeast endoplasmic reticulum in absence of functional COPII coat component Sec13p. Mol Biol Cell. 2002 Dec;13(12):4130-40. PMID:12475940 doi:10.1091/mbc.02-05-0082
- ↑ Sato K, Nakano A. Reconstitution of coat protein complex II (COPII) vesicle formation from cargo-reconstituted proteoliposomes reveals the potential role of GTP hydrolysis by Sar1p in protein sorting. J Biol Chem. 2004 Jan 9;279(2):1330-5. Epub 2003 Nov 19. PMID:14627716 doi:10.1074/jbc.C300457200
- ↑ Dokudovskaya S, Waharte F, Schlessinger A, Pieper U, Devos DP, Cristea IM, Williams R, Salamero J, Chait BT, Sali A, Field MC, Rout MP, Dargemont C. A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol Cell Proteomics. 2011 Jun;10(6):M110.006478. doi: 10.1074/mcp.M110.006478., Epub 2011 Mar 31. PMID:21454883 doi:10.1074/mcp.M110.006478
- ↑ Espenshade P, Gimeno RE, Holzmacher E, Teung P, Kaiser CA. Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J Cell Biol. 1995 Oct;131(2):311-24. PMID:7593161
- ↑ Kaiser CA, Schekman R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell. 1990 May 18;61(4):723-33. PMID:2188733
- ↑ Gimeno RE, Espenshade P, Kaiser CA. SED4 encodes a yeast endoplasmic reticulum protein that binds Sec16p and participates in vesicle formation. J Cell Biol. 1995 Oct;131(2):325-38. PMID:7593162
- ↑ Shaywitz DA, Espenshade PJ, Gimeno RE, Kaiser CA. COPII subunit interactions in the assembly of the vesicle coat. J Biol Chem. 1997 Oct 10;272(41):25413-6. PMID:9325247
- ↑ Campbell JL, Schekman R. Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):837-42. PMID:9023343
- ↑ Saito Y, Yamanushi T, Oka T, Nakano A. Identification of SEC12, SED4, truncated SEC16, and EKS1/HRD3 as multicopy suppressors of ts mutants of Sar1 GTPase. J Biochem. 1999 Jan;125(1):130-7. PMID:9880808
- ↑ Kurihara T, Hamamoto S, Gimeno RE, Kaiser CA, Schekman R, Yoshihisa T. Sec24p and Iss1p function interchangeably in transport vesicle formation from the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell. 2000 Mar;11(3):983-98. PMID:10712514
- ↑ Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A, Yoshimori T, Noda T, Ohsumi Y. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell. 2001 Nov;12(11):3690-702. PMID:11694599
- ↑ Supek F, Madden DT, Hamamoto S, Orci L, Schekman R. Sec16p potentiates the action of COPII proteins to bud transport vesicles. J Cell Biol. 2002 Sep 16;158(6):1029-38. Epub 2002 Sep 16. PMID:12235121 doi:10.1083/jcb.200207053
- ↑ Whittle JR, Schwartz TU. Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat. J Cell Biol. 2010 Aug 9;190(3):347-61. PMID:20696705 doi:10.1083/jcb.201003092
|