2a83
From Proteopedia
Crystal structure of hla-b*2705 complexed with the glucagon receptor (gr) peptide (residues 412-420)
Structural highlights
Disease[1B27_HUMAN] Defects in HLA-B are a cause of susceptibility to spondyloarthropathy type 1 (SPDA1) [MIM:106300]. It is a chronic rheumatic disease with multifactorial inheritance. It includes a spectrum of related disorders comprising ankylosing spondylitis, a subset of psoriatic arthritis, reactive arthritis (e.g. Reiter syndrome), arthritis associated with inflammatory bowel disease and undifferentiated spondyloarthropathy. These disorders may occur simultaneously or sequentially in the same patient, probably representing various phenotypic expressions of the same disease. Ankylosing spondylitis is the form of rheumatoid arthritis affecting the spine and is considered the prototype of seronegative spondyloarthropathies. It produces pain and stiffness as a result of inflammation of the sacroiliac, intervertebral, and costovertebral joints. Note=In the Greek Cypriot population, a restricted number of HLA-B27 subtypes are associated with ankylosing spondylitis and other B27-related diseases and an elevated frequency of the B*2702 allele in ankylosing spondylitis patients is identified. The allele B*2707 seems to have a protective role in this population because it was found only in the healthy controls.[1] [B2MG_HUMAN] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:241600]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.[2] Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] Function[1B27_HUMAN] Involved in the presentation of foreign antigens to the immune system. [B2MG_HUMAN] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAn interesting property of certain peptides presented by major histocompatibility complex (MHC) molecules is their acquisition of a dual binding mode within the peptide binding groove. Using x-ray crystallography at 1.4 A resolution, we show here that the glucagon receptor-derived self-peptide pGR ((412)RRRWHRWRL(420)) is presented by the disease-associated human MHC class I subtype HLA-B*2705 in a dual conformation as well, with the middle of the peptide bent toward the floor of the peptide binding groove of the molecule in both binding modes. The conformations of pGR are compared here with those of another self-peptide (pVIPR, RRKWRRWHL) that is also displayed in two binding modes by HLA-B*2705 antigens and with that of the viral peptide pLMP2 (RRRWRRLTV). Conserved structural features suggest that the N-terminal halves of the peptides are crucial in allowing cytotoxic T lymphocyte (CTL) cross-reactivity. In addition, an analysis of T cell receptors (TCRs) from pGR- or pVIPR-directed, HLA-B27-restricted CTL clones demonstrates that TCR from distinct clones but with comparable reactivity may share CDR3alpha but not CDR3beta regions. Therefore, the cross-reactivity of these CTLs depends on TCR-CDR3alpha, is modulated by TCR-CDR3beta sequences, and is ultimately a consequence of the conformational dimorphism that characterizes binding of the self-peptides to HLA-B*2705. These results lend support to the concept that conformational dimorphisms of MHC class I-bound peptides might be connected with the occurrence of self-reactive CTL. Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype.,Ruckert C, Fiorillo MT, Loll B, Moretti R, Biesiadka J, Saenger W, Ziegler A, Sorrentino R, Uchanska-Ziegler B J Biol Chem. 2006 Jan 27;281(4):2306-16. Epub 2005 Oct 12. PMID:16221670[16] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|