6or1
From Proteopedia
Human LRH-1 bound to the agonist 2N and a fragment of the Tif2 coregulator
Structural highlights
Disease[NCOA2_HUMAN] Note=Chromosomal aberrations involving NCOA2 may be a cause of acute myeloid leukemias. Inversion inv(8)(p11;q13) generates the KAT6A-NCOA2 oncogene, which consists of the N-terminal part of KAT6A and the C-terminal part of NCOA2/TIF2. KAT6A-NCOA2 binds to CREBBP and disrupts its function in transcription activation. Function[NR5A2_HUMAN] Binds to the sequence element 5'-AACGACCGACCTTGAG-3' of the enhancer II of hepatitis B virus genes, a critical cis-element of their expression and regulation. May be responsible for the liver-specific activity of enhancer II, probably in combination with other hepatocyte transcription factors. Key regulator of cholesterol 7-alpha-hydroxylase gene (CYP7A) expression in liver. May also contribute to the regulation of pancreas-specific genes and play important roles in embryonic development. [NCOA2_HUMAN] Transcriptional coactivator for steroid receptors and nuclear receptors. Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1). Required with NCOA1 to control energy balance between white and brown adipose tissues.[1] Publication Abstract from PubMedAs a key regulator of metabolism and inflammation, the orphan nuclear hormone receptor, Liver Receptor Homolog-1 (LRH-1), has potential as a therapeutic target for diabetes, nonalcoholic fatty liver disease, and inflammatory bowel diseases. Discovery of LRH-1 modulators has been difficult, in part due to the tendency for synthetic compounds to bind unpredictably within the lipophilic binding pocket. Using a structure-guided approach, we exploited a newly-discovered polar interaction to lock agonists in a consistent orientation. This enabled the discovery of the first low nanomolar LRH-1 agonist, one hundred times more potent than the best previous modulator. We elucidate a novel mechanism of action that relies upon specific polar interactions deep in the LRH-1 binding pocket. In an organoid model of inflammatory bowel disease, the new agonist increases expression of LRH-1-conrolled steroidogenic genes and promotes anti-inflammatory gene expression changes. These studies constitute major progress in developing LRH-1 modulators with potential clinical utility. Development of the first low nanomolar Liver Receptor Homolog-1 agonist through structure-guided design.,Mays S, Flynn AR, Cornelison J, Okafor CD, Wang H, Wang G, Huang X, Donaldson H, Millings E, Polavarapu R, Moore D, Calvert J, Jui NT, Ortlund EA J Med Chem. 2019 Aug 16. doi: 10.1021/acs.jmedchem.9b00753. PMID:31419141[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|