| Structural highlights
Function
[VAC8_YEAST] Functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole.[1] [ATG13_YEAST] Activates the ATG1 kinase in a nutritional condition dependent manner through the TOR pathway, leading to autophagy. Required for autophosphorylation of ATG1 at 'Thr-226' and its dimerization. May also be involved in the regulation of autophagy through SNF1. Involved in ATG9 and ATG23 cycling through the pre-autophagosomal structure. Also involved in cytoplasm to vacuole transport (Cvt) and more specifically in Cvt vesicle formation. Seems to play a role in the switching machinery regulating the conversion between the Cvt pathway and autophagy. Finally, ATG13 is also required for glycogen storage during stationary phase.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
Publication Abstract from PubMed
Armadillo (ARM) repeat proteins constitute a large protein family with diverse and fundamental functions in all organisms, and armadillo repeat domains share high structural similarity. However, exactly how these structurally similar proteins can mediate diverse functions remains a long-standing question. Vac8 (vacuole related 8) is a multifunctional protein that plays pivotal roles in various autophagic pathways, including piecemeal microautophagy of the nucleus (PMN) and cytoplasm-to-vacuole targeting (Cvt) pathways in the budding yeast Saccharomyces cerevisiae. Vac8 comprises an H1 helix at the N terminus, followed by 12 armadillo repeats. Herein, we report the crystal structure of Vac8 bound to Atg13, a key component of autophagic machinery. The 70-A extended loop of Atg13 binds to the ARM domain of Vac8 in an antiparallel manner. Structural, biochemical, and in vivo experiments demonstrated that the H1 helix of Vac8 intramolecularly associates with the first ARM and regulates its self-association, which is crucial for Cvt and PMN pathways. The structure of H1 helix-deleted Vac8 complexed with Atg13 reveals that Vac8[Delta19-33]-Atg13 forms a heterotetramer and adopts an extended superhelical structure exclusively employed in the Cvt pathway. Most importantly, comparison of Vac8-Nvj1 and Vac8-Atg13 provides a molecular understanding of how a single ARM domain protein adopts different quaternary structures depending on its associated proteins to differentially regulate 2 closely related but distinct cellular pathways. Abbreviations : Ape1: aminopeptidase I; ARM: armadillo repeat; Atg: autophagy-related; AUC: analytical ultracentrifugation; Cvt: cytoplasm-to-vacuole targeting; DIC: differential interference contrast; GFP: green fluorescent protein; GST: glutathione-S-transferase; ITC: isothermal titration calorimetry; NVJ: nucleus-vacuole junction; PDB: protein data bank; PMN: piecemeal microautophagy of the nucleus; prApe1: precursor Ape1; RMSD: root-mean-square deviation; SAXS: small-angle X-ray scattering; SD-N: nitrogen starvation medium; SEC: size-exclusion chromatography; tAtg13: Atg13 construct comprising residues 567-695; tNvj1: Nvj1 construct comprising residues 229-321; tVac8: Vac8 construct comprising residues 10-515; Vac8: vacuole related 8.
Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways.,Park J, Kim HI, Jeong H, Lee M, Jang SH, Yoon SY, Kim H, Park ZY, Jun Y, Lee C Autophagy. 2019 Sep 12:1-16. doi: 10.1080/15548627.2019.1659615. PMID:31512555[25]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Wang YX, Catlett NL, Weisman LS. Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J Cell Biol. 1998 Mar 9;140(5):1063-74. PMID:9490720
- ↑ Scott SV, Nice DC 3rd, Nau JJ, Weisman LS, Kamada Y, Keizer-Gunnink I, Funakoshi T, Veenhuis M, Ohsumi Y, Klionsky DJ. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem. 2000 Aug 18;275(33):25840-9. doi: 10.1074/jbc.M002813200. PMID:10837477 doi:http://dx.doi.org/10.1074/jbc.M002813200
- ↑ Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000 Sep 18;150(6):1507-13. PMID:10995454
- ↑ Abeliovich H, Dunn WA Jr, Kim J, Klionsky DJ. Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol. 2000 Nov 27;151(5):1025-34. PMID:11086004
- ↑ Wang Z, Wilson WA, Fujino MA, Roach PJ. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol. 2001 Sep;21(17):5742-52. doi: 10.1128/mcb.21.17.5742-5752.2001. PMID:11486014 doi:http://dx.doi.org/10.1128/mcb.21.17.5742-5752.2001
- ↑ Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell. 2004 Jan;6(1):79-90. PMID:14723849
- ↑ Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell. 2005 May;16(5):2544-53. doi: 10.1091/mbc.e04-08-0669. Epub 2005, Mar 2. PMID:15743910 doi:http://dx.doi.org/10.1091/mbc.e04-08-0669
- ↑ Suzuki K, Kubota Y, Sekito T, Ohsumi Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells. 2007 Feb;12(2):209-18. doi: 10.1111/j.1365-2443.2007.01050.x. PMID:17295840 doi:http://dx.doi.org/10.1111/j.1365-2443.2007.01050.x
- ↑ Legakis JE, Yen WL, Klionsky DJ. A cycling protein complex required for selective autophagy. Autophagy. 2007 Sep-Oct;3(5):422-32. doi: 10.4161/auto.4129. Epub 2007 Mar 9. PMID:17426440 doi:http://dx.doi.org/10.4161/auto.4129
- ↑ Yorimitsu T, Zaman S, Broach JR, Klionsky DJ. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell. 2007 Oct;18(10):4180-9. doi: 10.1091/mbc.e07-05-0485. Epub 2007, Aug 15. PMID:17699586 doi:http://dx.doi.org/10.1091/mbc.e07-05-0485
- ↑ Cheong H, Nair U, Geng J, Klionsky DJ. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell. 2008 Feb;19(2):668-81. doi: 10.1091/mbc.e07-08-0826. Epub 2007 Dec, 12. PMID:18077553 doi:http://dx.doi.org/10.1091/mbc.e07-08-0826
- ↑ Kawamata T, Kamada Y, Kabeya Y, Sekito T, Ohsumi Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell. 2008 May;19(5):2039-50. Epub 2008 Feb 20. PMID:18287526 doi:http://dx.doi.org/E07-10-1048
- ↑ Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54. Epub 2009 Sep 21. PMID:19805182 doi:http://dx.doi.org/0903316106
- ↑ Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y. Tor directly controls the atg1 kinase complex to regulate autophagy. Mol Cell Biol. 2010 Feb;30(4):1049-58. Epub 2009 Dec 7. PMID:19995911 doi:http://dx.doi.org/MCB.01344-09
- ↑ Yeh YY, Wrasman K, Herman PK. Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics. 2010 Jul;185(3):871-82. doi: 10.1534/genetics.110.116566. Epub 2010 May, 3. PMID:20439775 doi:http://dx.doi.org/10.1534/genetics.110.116566
- ↑ Ecker N, Mor A, Journo D, Abeliovich H. Induction of autophagic flux by amino acid deprivation is distinct from nitrogen starvation-induced macroautophagy. Autophagy. 2010 Oct;6(7):879-90. doi: 10.4161/auto.6.7.12753. Epub 2010 Oct 22. PMID:20647741 doi:http://dx.doi.org/10.4161/auto.6.7.12753
- ↑ Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol. 2010 Sep 20;190(6):1005-22. doi: 10.1083/jcb.200912089. PMID:20855505 doi:http://dx.doi.org/10.1083/jcb.200912089
- ↑ Graef M, Nunnari J. Mitochondria regulate autophagy by conserved signalling pathways. EMBO J. 2011 Jun 1;30(11):2101-14. doi: 10.1038/emboj.2011.104. Epub 2011 Apr 5. PMID:21468027 doi:http://dx.doi.org/10.1038/emboj.2011.104
- ↑ Yeh YY, Shah KH, Herman PK. An Atg13 protein-mediated self-association of the Atg1 protein kinase is important for the induction of autophagy. J Biol Chem. 2011 Aug 19;286(33):28931-9. doi: 10.1074/jbc.M111.250324. Epub 2011, Jun 28. PMID:21712380 doi:http://dx.doi.org/10.1074/jbc.M111.250324
- ↑ Umekawa M, Klionsky DJ. Ksp1 kinase regulates autophagy via the target of rapamycin complex 1 (TORC1) pathway. J Biol Chem. 2012 May 11;287(20):16300-10. doi: 10.1074/jbc.M112.344952. Epub, 2012 Mar 23. PMID:22447937 doi:http://dx.doi.org/10.1074/jbc.M112.344952
- ↑ Nakatogawa H, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW, Kirisako H, Kondo-Kakuta C, Noda NN, Yamamoto H, Ohsumi Y. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J Biol Chem. 2012 Aug 17;287(34):28503-7. doi: 10.1074/jbc.C112.387514. Epub 2012, Jul 9. PMID:22778255 doi:http://dx.doi.org/10.1074/jbc.C112.387514
- ↑ Lisa-Santamaria P, Jimenez A, Revuelta JL. The protein factor-arrest 11 (Far11) is essential for the toxicity of human caspase-10 in yeast and participates in the regulation of autophagy and the DNA damage signaling. J Biol Chem. 2012 Aug 24;287(35):29636-47. doi: 10.1074/jbc.M112.344192. Epub, 2012 Jul 10. PMID:22782902 doi:http://dx.doi.org/10.1074/jbc.M112.344192
- ↑ Kraft C, Kijanska M, Kalie E, Siergiejuk E, Lee SS, Semplicio G, Stoffel I, Brezovich A, Verma M, Hansmann I, Ammerer G, Hofmann K, Tooze S, Peter M. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 2012 Sep 12;31(18):3691-703. doi: 10.1038/emboj.2012.225. Epub 2012 Aug, 10. PMID:22885598 doi:http://dx.doi.org/10.1038/emboj.2012.225
- ↑ Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993 Oct 25;333(1-2):169-74. PMID:8224160
- ↑ Park J, Kim HI, Jeong H, Lee M, Jang SH, Yoon SY, Kim H, Park ZY, Jun Y, Lee C. Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways. Autophagy. 2019 Sep 12:1-16. doi: 10.1080/15548627.2019.1659615. PMID:31512555 doi:http://dx.doi.org/10.1080/15548627.2019.1659615
|