6y6x
From Proteopedia
Tetracenomycin X bound to the human ribosome
Structural highlights
Disease[RL5_HUMAN] Blackfan-Diamond disease. Diamond-Blackfan anemia 6 (DBA6) [MIM:612561]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of malignancy. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[1] [2] [RL26_HUMAN] Diamond-Blackfan anemia 11 (DBA11) [MIM:614900]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of malignancy. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[3] [RL7A_HUMAN] Note=Chromosomal recombination involving RPL7A activates the receptor kinase domain of the TRK oncogene. [RL21_HUMAN] Hypotrichosis simplex. Note=Defects in RPL21 are a cause of generalized hypotrichosis simplex (HTS). A rare form of non-syndromic hereditary hypotrichosis without characteristic hair shaft anomalies. Affected individuals typically show normal hair at birth, but hair loss and thinning of the hair shaft start during early childhood and progress with age.[4] [RL11_HUMAN] Blackfan-Diamond disease. Diamond-Blackfan anemia 7 (DBA7) [MIM:612562]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of malignancy. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[5] [6] [RL35A_HUMAN] Blackfan-Diamond disease. Diamond-Blackfan anemia 5 (DBA5) [MIM:612528]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of malignancy. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[7] Function[RL5_HUMAN] Required for rRNA maturation and formation of the 60S ribosomal subunits. This protein binds 5S RNA.[8] [RL23A_HUMAN] This protein binds to a specific region on the 26S rRNA (By similarity). [RL13A_HUMAN] Associated with ribosomes but is not required for canonical ribosome function and has extra-ribosomal functions. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma activation and subsequent phosphorylation dissociates from the ribosome and assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation. In the GAIT complex interacts with m7G cap-bound eIF4G at or near the eIF3-binding site and blocks the recruitment of the 43S ribosomal complex. Involved in methylation of rRNA.[9] [10] [11] [12] [RL41_HUMAN] Interacts with the beta subunit of protein kinase CKII and stimulates phosphorylation of DNA topoisomerase II alpha by CKII. [RL11_HUMAN] Binds to 5S ribosomal RNA (By similarity). Required for rRNA maturation and formation of the 60S ribosomal subunits. Promotes nucleolar location of PML (By similarity).[13] [RL7_HUMAN] Binds to G-rich structures in 28S rRNA and in mRNAs. Plays a regulatory role in the translation apparatus; inhibits cell-free translation of mRNAs. [RL40_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[14] [15] Ribosomal protein L40 is a component of the 60S subunit of the ribosome.[16] [17] [RL10L_HUMAN] May play a role in compensating for the inactivated X-linked gene during spermatogenesis. [RL37_HUMAN] Binds to the 23S rRNA (By similarity). [RL6_HUMAN] Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I. [RL35A_HUMAN] Required for the proliferation and viability of hematopoietic cells. Plays a role in 60S ribosomal subunit formation. The protein was found to bind to both initiator and elongator tRNAs and consequently was assigned to the P site or P and A site.[18] [RL3_HUMAN] The L3 protein is a component of the large subunit of cytoplasmic ribosomes. Publication Abstract from PubMedThe increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked. Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel.,Osterman IA, Wieland M, Maviza TP, Lashkevich KA, Lukianov DA, Komarova ES, Zakalyukina YV, Buschauer R, Shiriaev DI, Leyn SA, Zlamal JE, Biryukov MV, Skvortsov DA, Tashlitsky VN, Polshakov VI, Cheng J, Polikanov YS, Bogdanov AA, Osterman AL, Dmitriev SE, Beckmann R, Dontsova OA, Wilson DN, Sergiev PV Nat Chem Biol. 2020 Jun 29. pii: 10.1038/s41589-020-0578-x. doi:, 10.1038/s41589-020-0578-x. PMID:32601485[19] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|